Geodesics As Hamiltonian Flows - Geodesics As An Application of The Principle of Least Action

Geodesics As An Application of The Principle of Least Action

Given a (pseudo-)Riemannian manifold M, a geodesic may be defined as the curve that results from the application of the principle of least action. A differential equation describing their shape may be derived, using variational principles, by minimizing (or finding the extremum) of the energy of a curve. Given a smooth curve

that maps an interval I of the real number line to the manifold M, one writes the energy

where is the tangent vector to the curve at point . Here, is the metric tensor on the manifold M.

Using the energy given above as the action, one may choose to solve either the Euler–Lagrange equations, or the Hamilton-Jacobi equations. Both methods give the geodesic equation as the solution; however, the Hamilton–Jacobi equations provide greater insight into the structure of the manifold, as shown below. In terms of the local coordinates on M, the (Euler–Lagrange) geodesic equation is

Here, the xa(t) are the coordinates of the curve γ(t) and are the Christoffel symbols. Repeated indices imply the use of the summation convention.

Read more about this topic:  Geodesics As Hamiltonian Flows

Famous quotes containing the words application, principle and/or action:

    It is known that Whistler when asked how long it took him to paint one of his “nocturnes” answered: “All of my life.” With the same rigor he could have said that all of the centuries that preceded the moment when he painted were necessary. From that correct application of the law of causality it follows that the slightest event presupposes the inconceivable universe and, conversely, that the universe needs even the slightest of events.
    Jorge Luis Borges (1899–1986)

    Without the Constitution and the Union, we could not have attained the result; but even these, are not the primary cause of our great prosperity. There is something back of these, entwining itself more closely about the human heart. That something, is the principle of “Liberty to all”Mthe principle that clears the path for all—gives hope to all—and, by consequence, enterprize [sic], and industry to all.
    Abraham Lincoln (1809–1865)

    It is funny that men who are supposed to be scientific cannot get themselves to realise the basic principle of physics, that action and reaction are equal and opposite, that when you persecute people you always rouse them to be strong and stronger.
    Gertrude Stein (1874–1946)