Definition
A genus φ assigns a number φ(X) to each manifold X such that
- φ(X∪Y) = φ(X) + φ(Y) (where ∪ is the disjoint union)
- φ(X×Y) = φ(X)φ(Y)
- φ(X) = 0 if X is a boundary.
The manifolds may have some extra structure; for example, they might be oriented, or spin, and so on (see list of cobordism theories for many more examples). The value φ(X) is in some ring, often the ring of rational numbers, though it can be other rings such as Z/2Z or the ring of modular forms.
The conditions on φ can be rephrased as saying that φ is a ring homomorphism from the cobordism ring of manifolds (with given structure) to another ring.
Example: If φ(X) is the signature of the oriented manifold X, then φ is a genus from oriented manifolds to the ring of integers.
Read more about this topic: Genus Of A Multiplicative Sequence
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)