Genetics of Social Behavior - Neurobiology of Mating Decisions

Neurobiology of Mating Decisions

The neurobiology of drosophila mating behavior is an area of research that has studied in detail and has elucidated the genetic basis for behavior. The male courts a female based on pheromones from the female and previous experience courting other potential mates. The female accepts or rejects the male's courtship also based on pheromones, the acoustics of his courtship song, and her readiness to mate. The mating behavior of drosophila had been described almost a century ago, and the genetics of these behaviors have been studied for several decades. The current interest in neurobiology is trying to understand the neural circuits that provide the basis of action selection—how the brain maps sensory input, internal states, and individual experience to behavioral decisions.

The pathways that govern the mapping of pheromones to the brain of drosophila are beginning to be understood in detail. Pheromones are detected by olfactory sensory neurons (OSNs). A well-studied pheromone is cVA, which suppresses male courtship behavior when the male detects it from a female. cVA complexes with other proteins to form a ligand, which binds to the odorant receptor Or67d present in OSNs, which is specific for cVA. In turn, the OSNs grow axons that will connect to the glomerulus DA1 in the antennal lobe, which is analogous to the olfactory bulb in mammals. This glomerulus then connects to DA1 projection neurons (PNs) which relay the pheromone signal further to higher brain centers in the protocerebrum (anterior part of an arthropod brain). It is noteworthy that there is significant neuronal convergence taking place between the OSNs and PNs—about 50 OSN inputs to 4 PNs.

Another pathway that has been studied is that involving another odorant receptor called Or47b, which is connected to the VA1v glomerulus. Its respective pathway conveys pheromones from odors in both sexes, and when the genetics of the involved neurons is changed, male courtship is delayed. As a simple model, one would view the integration of the Or67d/DA1 and Or47b/VA1v pathways as a way to describe the initiation of mating behavior in drosophila. The former will tend to inhibit male courtship, whereas the latter is thought to stimulate mating.

It is thought that the difference in the fru gene causes the bulk of the distinction in sexual differentiation in neural circuits. Although the sensory and motor circuits are nearly identical in both sexes, the fru gene fine tunes these according to the needs of either sex. There is learning taking place when a male engages in courtship behavior. A male learns by experience, after courtship rejection by females that have already mated he learns not to pursue other mated females. Similarly, courtship of receptive virgin females is learned after past mating successes. The mushroom body is a probable site for this experience-dependent modulation of pheromones, as disrupting fru in neurons in this area reduces short term courtship behavior. Long term courtship is suppressed by the presence of certain proteins in this region of the brain.

For females, the decision whether to mate or not when courted by a male largely depends on the courtship song. Analogous to OSNs, the female's Johnston's organ neurons (JONs) distinguish the quality of the song, and a distinct mechanical stimuli projects signals to specific regions of the brain, which can lead to mating. The reluctance for a female to mate again after having mated before has a molecular basis. In the male Drosophila ejaculate, there is a sex peptide (SP) which binds to the sex peptide receptor (SRP) in the female's fru neurons, disrupting pathways that would compel the female to mate again.

Future research in this area hopes to further explain how the chemical and auditory signals are processed and mapped to behaviors in the fly's brain. Though the molecular mechanisms in the pathways vary between mammals and insects, it has been shown that the information is processed in similar ways. The relative simplicity of fly nervous systems could eventually hint at how neural circuits solve complex behavioral decision making.

Read more about this topic:  Genetics Of Social Behavior

Famous quotes containing the words mating and/or decisions:

    He’s one of those know-it-all types that, if you flatter the wig off him, he chatter like a goony bird at mating time.
    —Michael Blankfort. Lewis Milestone. Johnson (Reginald Gardner)

    No one ever promised me it would be easy and it’s not. But I also get many rewards from seeing my children grow, make strong decisions for themselves, and set out on their own as independent, strong, likeable human beings. And I like who I am becoming, too. Having teenagers has made me more human, more flexible, more humble, more questioning—and, finally it’s given me a better sense of humor!
    —Anonymous Father. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 4 (1978)