Genetic Algorithm - History

History

Computer simulations of evolution started as early as in 1954 with the work of Nils Aall Barricelli, who was using the computer at the Institute for Advanced Study in Princeton, New Jersey. His 1954 publication was not widely noticed. Starting in 1957, the Australian quantitative geneticist Alex Fraser published a series of papers on simulation of artificial selection of organisms with multiple loci controlling a measurable trait. From these beginnings, computer simulation of evolution by biologists became more common in the early 1960s, and the methods were described in books by Fraser and Burnell (1970) and Crosby (1973). Fraser's simulations included all of the essential elements of modern genetic algorithms. In addition, Hans-Joachim Bremermann published a series of papers in the 1960s that also adopted a population of solution to optimization problems, undergoing recombination, mutation, and selection. Bremermann's research also included the elements of modern genetic algorithms. Other noteworthy early pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are reprinted by Fogel (1998).

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability to play a simple game, artificial evolution became a widely recognized optimization method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the 1960s and early 1970s – Rechenberg's group was able to solve complex engineering problems through evolution strategies. Another approach was the evolutionary programming technique of Lawrence J. Fogel, which was proposed for generating artificial intelligence. Evolutionary programming originally used finite state machines for predicting environments, and used variation and selection to optimize the predictive logics. Genetic algorithms in particular became popular through the work of John Holland in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata, conducted by Holland and his students at the University of Michigan. Holland introduced a formalized framework for predicting the quality of the next generation, known as Holland's Schema Theorem. Research in GAs remained largely theoretical until the mid-1980s, when The First International Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania.

As academic interest grew, the dramatic increase in desktop computational power allowed for practical application of the new technique. In the late 1980s, General Electric started selling the world's first genetic algorithm product, a mainframe-based toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the world's first commercial GA product for desktop computers. The New York Times technology writer John Markoff wrote about Evolver in 1990.

Read more about this topic:  Genetic Algorithm

Famous quotes containing the word history:

    Free from public debt, at peace with all the world, and with no complicated interests to consult in our intercourse with foreign powers, the present may be hailed as the epoch in our history the most favorable for the settlement of those principles in our domestic policy which shall be best calculated to give stability to our Republic and secure the blessings of freedom to our citizens.
    Andrew Jackson (1767–1845)

    The history of modern art is also the history of the progressive loss of art’s audience. Art has increasingly become the concern of the artist and the bafflement of the public.
    Henry Geldzahler (1935–1994)

    When the landscape buckles and jerks around, when a dust column of debris rises from the collapse of a block of buildings on bodies that could have been your own, when the staves of history fall awry and the barrel of time bursts apart, some turn to prayer, some to poetry: words in the memory, a stained book carried close to the body, the notebook scribbled by hand—a center of gravity.
    Adrienne Rich (b. 1929)