Continued Fractions and Series
Euler proved the following identity:
From this many other results can be derived, such as
and
Euler's formula connecting continued fractions and series is the motivation for the fundamental inequalities, and also the basis of elementary approaches to the convergence problem.
Read more about this topic: Generalized Continued Fraction
Famous quotes containing the words continued and/or series:
“Our current obsession with creativity is the result of our continued striving for immortality in an era when most people no longer believe in an after-life.”
—Arianna Stassinopoulos (b. 1950)
“As Cuvier could correctly describe a whole animal by the contemplation of a single bone, so the observer who has thoroughly understood one link in a series of incidents should be able to accurately state all the other ones, both before and after.”
—Sir Arthur Conan Doyle (18591930)