Generalized Continued Fraction - Continued Fractions and Series

Continued Fractions and Series

Euler proved the following identity:


a_0 + a_0a_1 + a_0a_1a_2 + \cdots + a_0a_1a_2\cdots a_n =
\frac{a_0}{1-}
\frac{a_1}{1+a_1-}
\frac{a_2}{1+a_2-}\cdots
\frac{a_{n}}{1+a_n}.\,

From this many other results can be derived, such as


\frac{1}{u_1}+
\frac{1}{u_2}+
\frac{1}{u_3}+
\cdots+
\frac{1}{u_n} =
\frac{1}{u_1-}
\frac{u_1^2}{u_1+u_2-}
\frac{u_2^2}{u_2+u_3-}\cdots
\frac{u_{n-1}^2}{u_{n-1}+u_n},\,

and


\frac{1}{a_0} + \frac{x}{a_0a_1} + \frac{x^2}{a_0a_1a_2} + \cdots +
\frac{x^n}{a_0a_1a_2 \ldots a_n} =
\frac{1}{a_0-}
\frac{a_0x}{a_1+x-}
\frac{a_1x}{a_2+x-}\cdots
\frac{a_{n-1}x}{a_n-x}.\,

Euler's formula connecting continued fractions and series is the motivation for the fundamental inequalities, and also the basis of elementary approaches to the convergence problem.

Read more about this topic:  Generalized Continued Fraction

Famous quotes containing the words continued and/or series:

    Along the journey we commonly forget its goal. Almost every vocation is chosen and entered upon as a means to a purpose but is ultimately continued as a final purpose in itself. Forgetting our objectives is the most frequent stupidity in which we indulge ourselves.
    Friedrich Nietzsche (1844–1900)

    The woman’s world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.
    Jeanine Basinger (b. 1936)