General Number Field Sieve - Number Fields

Number Fields

Suppose f is an k-degree polynomial over Q (the rational numbers), and r is a complex root of f. Then, f(r) = 0, which can be rearranged to express rk as a linear combination of powers of r less than k. This equation can be used to reduce away any powers of rk. For example, if f(x) = x2 + 1 and r is the imaginary unit i, then i2 + 1=0, or i2 = −1. This allows us to define the complex product:

(a+bi)(c+di) = ac + (ad+bc)i + (bd)i2 = (acbd) + (ad+bc)i.

In general, this leads directly to the algebraic number field Q, which can be defined as the set of real numbers given by:

ak−1rk−1 + ... + a1r1 + a0r0, where a0,...,al−1 in Q.

The product of any two such values can be computed by taking the product as polynomials, then reducing any powers of rk as described above, yielding a value in the same form. To ensure that this field is actually k-dimensional and does not collapse to an even smaller field, it is sufficient that f is an irreducible polynomial. Similarly, one may define the number field ring Z as the subset of Q where a0,...,ak−1 are restricted to be integers.

Read more about this topic:  General Number Field Sieve

Famous quotes containing the words number and/or fields:

    Hence, a generative grammar must be a system of rules that can iterate to generate an indefinitely large number of structures. This system of rules can be analyzed into the three major components of a generative grammar: the syntactic, phonological, and semantic components.
    Noam Chomsky (b. 1928)

    For my part, I would rather look toward Rutland than Jerusalem. Rutland,—modern town,—land of ruts,—trivial and worn,—not too sacred,—with no holy sepulchre, but profane green fields and dusty roads, and opportunity to live as holy a life as you can, where the sacredness, if there is any, is all in yourself and not in the place.
    Henry David Thoreau (1817–1862)