Gene Prediction - Ab Initio Approaches

Ab Initio Approaches

Because of the inherent expense and difficulty in obtaining extrinsic evidence for many genes, it is also necessary to resort to Ab initio gene finding, in which genomic DNA sequence alone is systematically searched for certain tell-tale signs of protein-coding genes. These signs can be broadly categorized as either signals, specific sequences that indicate the presence of a gene nearby, or content, statistical properties of protein-coding sequence itself. Ab initio gene finding might be more accurately characterized as gene prediction, since extrinsic evidence is generally required to conclusively establish that a putative gene is functional.

In the genomes of prokaryotes, genes have specific and relatively well-understood promoter sequences (signals), such as the Pribnow box and transcription factor binding sites, which are easy to systematically identify. Also, the sequence coding for a protein occurs as one contiguous open reading frame (ORF), which is typically many hundred or thousands of base pairs long. The statistics of stop codons are such that even finding an open reading frame of this length is a fairly informative sign. (Since 3 of the 64 possible codons in the genetic code are stop codons, one would expect a stop codon approximately every 20–25 codons, or 60–75 base pairs, in a random sequence.) Furthermore, protein-coding DNA has certain periodicities and other statistical properties that are easy to detect in sequence of this length. These characteristics make prokaryotic gene finding relatively straightforward, and well-designed systems are able to achieve high levels of accuracy.

Ab initio gene finding in eukaryotes, especially complex organisms like humans, is considerably more challenging for several reasons. First, the promoter and other regulatory signals in these genomes are more complex and less well-understood than in prokaryotes, making them more difficult to reliably recognize. Two classic examples of signals identified by eukaryotic gene finders are CpG islands and binding sites for a poly(A) tail.

Second, splicing mechanisms employed by eukaryotic cells mean that a particular protein-coding sequence in the genome is divided into several parts (exons), separated by non-coding sequences (introns). (Splice sites are themselves another signal that eukaryotic gene finders are often designed to identify.) A typical protein-coding gene in humans might be divided into a dozen exons, each less than two hundred base pairs in length, and some as short as twenty to thirty. It is therefore much more difficult to detect periodicities and other known content properties of protein-coding DNA in eukaryotes.

Advanced gene finders for both prokaryotic and eukaryotic genomes typically use complex probabilistic models, such as hidden Markov models (HMMs), in order to combine information from a variety of different signal and content measurements. The GLIMMER system is a widely used and highly accurate gene finder for prokaryotes. GeneMark is another popular approach. Eukaryotic ab initio gene finders, by comparison, have achieved only limited success; notable examples are the GENSCAN and geneid programs. The SNAP gene finder is HMM-based like Genscan and attempts to be more adaptable to different organisms, addressing problems related to using a gene finder on a genome sequence that it was not trained against. A few recent approaches like mSplicer, CONTRAST, or mGene also use machine learning techniques like support vector machines for successful gene prediction. They build a discriminative model using hidden Markov support vector machines or conditional random fields to learn an accurate gene prediction scoring function.

Read more about this topic:  Gene Prediction

Famous quotes containing the word approaches:

    A politician is a statesman who approaches every question with an open mouth.
    Adlai Stevenson (1900–1965)