Geiger Tube Telescope

The Geiger Tube Telescope is a scientific instrument that measures the intensities, energy spectra, and angular distribution of energetic electrons and protons in interplanetary space and near Jupiter and Saturn.

On Pioneer 10, the instrument used an array of seven miniature Geiger-Müller tubes, collectively known as a Geiger Tube Telescope (GTT). Each tube was a small gas-filled cylinder. When a charged particle passed through the gas, an electrical pulse was generated by the applied voltage. Individual pulses from five of the tubes and coincident pulses from three combinations of the seven tubes were transmitted. Protons of energy greater than 5 MeV and electrons with energies greater 40 keV were detected.

On Pioneer 11, one Geiger-Müller tube was replaced by a thin silicon wafer to detect protons in the specific energy range 0.61 to 3.41 MeV. Other minor changes were made to improve the characteristics of the detector system.

The trains of pulses were passed through quasi-logarithmic data processors and then to the radio telemetry system of the spacecraft. Angular distributions were measured as the spacecraft rotated. This telemetry data was transmitted to the earth by an 8 watt S band transmitter within the Pioneer probe at one of eight data rates (from 16 to 2048 bits per second).

Famous quotes containing the words tube and/or telescope:

    One of the great natural phenomena is the way in which a tube of toothpaste suddenly empties itself when it hears that you are planning a trip, so that when you come to pack it is just a twisted shell of its former self, with not even a cubic millimeter left to be squeezed out.
    Robert Benchley (1889–1945)

    The sight of a planet through a telescope is worth all the course on astronomy; the shock of the electric spark in the elbow, outvalues all the theories; the taste of the nitrous oxide, the firing of an artificial volcano, are better than volumes of chemistry.
    Ralph Waldo Emerson (1803–1882)