Gauss's Law - Equivalence of Total and Free Charge Statements

Equivalence of Total and Free Charge Statements

Proof that the formulations of Gauss's law in terms of free charge are equivalent to the formulations involving total charge.
In this proof, we will show that the equation

is equivalent to the equation

Note that we're only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the divergence theorem.

We introduce the polarization density P, which has the following relation to E and D:

and the following relation to the bound charge:

Now, consider the three equations:

The key insight is that the sum of the first two equations is the third equation. This completes the proof: The first equation is true by definition, and therefore the second equation is true if and only if the third equation is true. So the second and third equations are equivalent, which is what we wanted to prove.

Read more about this topic:  Gauss's Law

Famous quotes containing the words total, free, charge and/or statements:

    [The sceptic] must acknowledge, if he will acknowledge any thing, that all human life must perish, were his principles to prevail. All discourse, all action would immediately cease, and men remain in a total lethargy, till the necessities of nature, unsatisfied, put an end to their miserable existence.
    David Hume (1711–1776)

    This leads us to note down in our psychological chart of the mass-man of today two fundamental traits: the free expansion of his vital desires, and, therefore, of his personality; and his radical ingratitude towards all that has made possible the ease of his existence. These traits together make up the well-known psychology of the spoilt child.
    José Ortega Y Gasset (1883–1955)

    Yet I would bear my shortcomings
    With meet tranquility,
    But for the charge that blessed things
    I’d liefer not have be.
    O, doth a bird deprived of wings
    Go earth-bound wilfully!
    Thomas Hardy (1840–1928)

    Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements.
    Rudolf Carnap (1891–1970)