Gauss's Law - Equivalence of Total and Free Charge Statements

Equivalence of Total and Free Charge Statements

Proof that the formulations of Gauss's law in terms of free charge are equivalent to the formulations involving total charge.
In this proof, we will show that the equation

is equivalent to the equation

Note that we're only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the divergence theorem.

We introduce the polarization density P, which has the following relation to E and D:

and the following relation to the bound charge:

Now, consider the three equations:

The key insight is that the sum of the first two equations is the third equation. This completes the proof: The first equation is true by definition, and therefore the second equation is true if and only if the third equation is true. So the second and third equations are equivalent, which is what we wanted to prove.

Read more about this topic:  Gauss's Law

Famous quotes containing the words total, free, charge and/or statements:

    The techniques of opening conversation are universal. I knew long ago and rediscovered that the best way to attract attention, help, and conversation is to be lost. A man who seeing his mother starving to death on a path kicks her in the stomach to clear the way, will cheerfully devote several hours of his time giving wrong directions to a total stranger who claims to be lost.
    John Steinbeck (1902–1968)

    The real American type can never be a ballet dancer. The legs are too long, the body too supple and the spirit too free for this school of affected grace and toe walking.
    Isadora Duncan (1878–1927)

    One can only call that youth healthful which refuses to be reconciled old ways and which, foolishly or shrewdly, combats the old. This is nature’s charge and all progress hinges upon it.
    Anton Pavlovich Chekhov (1860–1904)

    The statements of science are hearsay, reports from a world outside the world we know. What the poet tells us has long been known to us all, and forgotten. His knowledge is of our world, the world we are both doomed and privileged to live in, and it is a knowledge of ourselves, of the human condition, the human predicament.
    John Hall Wheelock (1886–1978)