Gauss's Law - Equivalence of Total and Free Charge Statements

Equivalence of Total and Free Charge Statements

Proof that the formulations of Gauss's law in terms of free charge are equivalent to the formulations involving total charge.
In this proof, we will show that the equation

is equivalent to the equation

Note that we're only dealing with the differential forms, not the integral forms, but that is sufficient since the differential and integral forms are equivalent in each case, by the divergence theorem.

We introduce the polarization density P, which has the following relation to E and D:

and the following relation to the bound charge:

Now, consider the three equations:

The key insight is that the sum of the first two equations is the third equation. This completes the proof: The first equation is true by definition, and therefore the second equation is true if and only if the third equation is true. So the second and third equations are equivalent, which is what we wanted to prove.

Read more about this topic:  Gauss's Law

Famous quotes containing the words total, free, charge and/or statements:

    It seems certain, that though a man, in a flush of humour, after intense reflection on the many contradictions and imperfections of human reason, may entirely renounce all belief and opinion, it is impossible for him to persevere in this total scepticism, or make it appear in his conduct for a few hours.
    David Hume (1711–1776)

    The doctrine that all men are, in any sense, or have been, at any time, free and equal, is an utterly baseless fiction.
    Thomas Henry Huxley (1825–95)

    Your last words as you led the charge up the beach were, “Okay, men, let’s show ‘em whose beach this is!”
    Paddy Chayefsky (1923–1981)

    He admired the terrible recreative power of his memory. It was only with the weakening of this generator whose fecundity diminishes with age that he could hope for his torture to be appeased. But it appeared that the power to make him suffer of one of Odette’s statements seemed exhausted, then one of these statements on which Swann’s spirit had until then not dwelled, an almost new word relayed the others and struck him with new vigor.
    Marcel Proust (1871–1922)