Gaussian Free Field

Gaussian Free Field

In probability theory and statistical mechanics, the Gaussian free field (GFF) is a Gaussian random field, a central model of random surfaces (random height functions). Sheffield (2007) gives a mathematical survey of the Gaussian free field.

The discrete version can be defined on any graph, usually a lattice in d-dimensional Euclidean space. The continuum version is defined on Rd or on a bounded subdomain of Rd. It can be thought of as a natural generalization of one-dimensional Brownian motion to d time (but still one space) dimensions; in particular, the one-dimensional continuum GFF is just the standard one-dimensional Brownian motion or Brownian bridge on an interval.

In the theory of random surfaces, it is also called the harmonic crystal. It is also the starting point for many constructions in quantum field theory, where it is called the Euclidean bosonic massless free field. A key property of the 2-dimensional GFF is conformal invariance, which relates it in several ways to the Schramm-Loewner Evolution, see Sheffield (2005) and Dubédat (2007).

Similarly to Brownian motion, which is the scaling limit of a wide range of discrete random walk models (see Donsker's theorem), the continuum GFF is the scaling limit of not only the discrete GFF on lattices, but of many random height function models, such as the height function of uniform random planar domino tilings, see Kenyon (2001). The planar GFF is also the limit of the fluctuations of the characteristic polynomial of a random matrix model, the Ginibre ensemble, see Rider & Virág (2007).

Read more about Gaussian Free Field:  Definition of The Discrete GFF, The Continuum Field

Famous quotes containing the words free and/or field:

    The only free road, the Underground Railroad, is owned and managed by the Vigilant Committee. They have tunneled under the whole breadth of the land.
    Henry David Thoreau (1817–1862)

    It is through attentive love, the ability to ask “What are you going through?” and the ability to hear the answer that the reality of the child is both created and respected.
    —Mary Field Belenky (20th century)