Gauss' Law For Gravity - Poisson's Equation and Gravitational Potential

Poisson's Equation and Gravitational Potential

Since the gravitational field has zero curl (equivalently, gravity is a conservative force) as mentioned above, it can be written as the gradient of a scalar potential, called the gravitational potential:

Then the differential form of Gauss's law for gravity becomes Poisson's equation:

This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing g via Poisson's equation is mathematically equivalent to computing g directly from Gauss's law, one or the other approach may be an easier computation in a given situation.

In radially symmetric systems, the gravitational potential is a function of only one variable (namely, ), and Poisson's equation becomes (see Del in cylindrical and spherical coordinates):

while the gravitational field is:

When solving the equation it should be taken into account that in the case of finite densities ∂ϕ/∂r has to be continuous at boundaries (discontinuities of the density), and zero for r = 0.

Read more about this topic:  Gauss' Law For Gravity

Famous quotes containing the words equation and/or potential:

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)

    It can be fairly argued that the highest priority for mankind is to save itself from extinction. However, it can also be argued that a society that neglects its children and robs them of their human potential can extinguish itself without an external enemy.
    Selma Fraiberg (20th century)