The **gauge covariant derivative** is like a generalization of the covariant derivative used in general relativity. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations.

Read more about Gauge Covariant Derivative: Fluid Dynamics, Gauge Theory, General Relativity

### Other articles related to "gauge covariant derivative":

**Gauge Covariant Derivative**- General Relativity

... In general relativity, the

**gauge covariant derivative**is defined as where is the Christoffel symbol ...

### Famous quotes containing the word derivative:

“Poor John Field!—I trust he does not read this, unless he will improve by it,—thinking to live by some *derivative* old-country mode in this primitive new country.... With his horizon all his own, yet he a poor man, born to be poor, with his inherited Irish poverty or poor life, his Adam’s grandmother and boggy ways, not to rise in this world, he nor his posterity, till their wading webbed bog-trotting feet get talaria to their heels.”

—Henry David Thoreau (1817–1862)