Device Description
Normal thyristors (Silicon-controlled rectifier) are not fully controllable switches (a "fully controllable switch" can be turned on and off at will). Thyristors can only be turned ON and cannot be turned OFF. Thyristors are switched ON by a gate signal, but even after the gate signal is de-asserted (removed), the thyristor remains in the ON-state until any turn-off condition occurs (which can be the application of a reverse voltage to the terminals, or when the current flowing through (forward current) falls below a certain threshold value known as the "holding current"). Thus, a thyristor behaves like a normal semiconductor diode after it is turned on or "fired".
The GTO can be turned-on by a gate signal, and can also be turned-off by a gate signal of negative polarity.
Turn on is accomplished by a "positive current" pulse between the gate and cathode terminals. As the gate-cathode behaves like PN junction, there will be some relatively small voltage between the terminals. The turn on phenomenon in GTO is however, not as reliable as an SCR (thyristor) and small positive gate current must be maintained even after turn on to improve reliability.
Turn off is accomplished by a "negative voltage" pulse between the gate and cathode terminals. Some of the forward current (about one-third to one-fifth) is "stolen" and used to induce a cathode-gate voltage which in turn induces the forward current to fall and the GTO will switch off (transitioning to the 'blocking' state.)
GTO thyristors suffer from long switch off times, whereby after the forward current falls, there is a long tail time where residual current continues to flow until all remaining charge from the device is taken away. This restricts the maximum switching frequency to approx 1 kHz.It may be noted however, that the turn off time of a GTO is approximately ten times faster that of a comparable SCR.
To assist with the turn-off process, GTO thyristors are usually constructed from a large number (hundreds or thousands) of small thyristor cells connected in parallel.
| Characteristic | Description | Thyristor (1600 V, 350 A) | GTO (1600 V, 350 A) |
|---|---|---|---|
| VT ON | On state voltage drop | 1.5 V | 3.4 V |
| ton,Igon | Turn on time, gate current | 8 µs,200 mA | 2 µs,2 A |
| toff | Turn off time | 150 µs | 15 µs |
Comparison of an SCR and GTO of same rating.
A distributed buffer gate turn-off thyristor (DB-GTO) is a thyristor with additional PN layers in the drift region to reshape the field profile and increase the voltage blocked in the off state. Compared to a typical PNPN structure of a conventional thyristor, this thyristor would be a PN-PN-PN type structure in here.
Read more about this topic: Gate Turn-off Thyristor
Famous quotes containing the words device and/or description:
“UG [universal grammar] may be regarded as a characterization of the genetically determined language faculty. One may think of this faculty as a language acquisition device, an innate component of the human mind that yields a particular language through interaction with present experience, a device that converts experience into a system of knowledge attained: knowledge of one or another language.”
—Noam Chomsky (b. 1928)
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)