Function (mathematics) - Definition

Definition

This does not represent a function since 2 is the first element in more than one ordered pair, in particular, (2, B) and (2, C) are both elements of the set of ordered pairs.

In order to avoid the use of the not rigorously defined words "rule" and "associates", the above intuitive explanation of functions is completed with a formal definition. This definition relies on the notion of the cartesian product. The cartesian product of two sets X and Y is the set of all ordered pairs, written (x, y), where x is an element of X and y is an element of Y. The x and the y are called the components of the ordered pair. The cartesian product of X and Y is denoted by X × Y.

A function f from X to Y is a subset of the cartesian product X × Y subject to the following condition: every element of X is the first component of one and only one ordered pair in the subset. In other words, for every x in X there is exactly one element y such that the ordered pair (x, y) is contained in the subset defining the function f. This formal definition is a precise rendition of the idea that to each x is associated an element y of Y, namely the uniquely specified element y with the property just mentioned.

Considering the "color-of-the-shape" function above, the set X is the domain consisting of the four shapes, while Y is the codomain consisting of five colors. There are twenty possible ordered pairs (four shapes times five colors), one of which is

("rectangle", "red").

The "color-of-the-shape" function described above consists of the set of those ordered pairs,

(shape, color)

where the color is the actual color of the given shape. As the triangle is red, the pair ("triangle", "red") will be in the function, but the pair ("rectangle", "red") is not.

Read more about this topic:  Function (mathematics)

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)