Fully Automatic Time - Use in Athletics

Use in Athletics

According to the IAAF, any record in athletics (world, Olympic, or national) or qualifying time for Olympic Games or World Championships set in a sprint event must be timed by a FAT system to be valid.

Hand times, those with humans operating the stopping and/or starting mechanisms are highly prone to error. By rule, they are only accurate to a tenth (.1) of a second, all 100ths of a second beyond zero must be rounded to the next highest tenth.

Many track and field statisticians use a conversion factor estimate of 0.24 seconds added to any hand-timed mark in the 100 m or 200 m event, and 0.14 seconds to any hand-timed mark in the 400 m or longer event. These conversion factors are only applicable for comparing marks from a variety of sources, but are not acceptable for Record purposes. In the case of comparing an adjusted manual time to FAT timing, an original FAT time being equivalent, the FAT time will be considered more accurate, and thus the athlete will be given the higher seed, or comparison ranking. This old method of converting times dates back to when FAT systems were much less common. They are increasingly less acceptable even at low level meets and certainly not at the upper level of the sport.

Fully automatic timing did not become mandatory for world records until 1 January 1977.

The first known time with an auto timing device in the Olympic Games was in the steeplechase in 1928, won by Loukola in 9:21.60 (9:21 4/5 official hand time) . The device used was the Löbner camera-timer.

In 1932 three sytems were used - official hand timing, hand started photo-finish times, and the Gustavus Kirby timing device, which was designed by Kirby to determine the correct order of finish in horse races. The official report for 1932 Olympics states: "In addition to hand timing, two auxiliary electrical timing devices were used. Both were started by an attachment to the starters gun. One was stopped by hand at the time the runners hit the tape. The other was provided with a motion picture camera which photographed the runner at the tape and the dial of the time indicator simultaneously."

In 1936 FAT was used but very few times have been found.

In 1948 Bulova began developing the Phototimer, a unique combination of photo-finish camera and precision electronic timing instrument. The Phototimer was the first automatic timing device to be used in competitive sports. It was used extensively in North America, including at the 1948 US Olympic trials. The Bulova device was activated by the sound of the starting gun firing, rather than by a direct connection, which means that the times were around 0.02 seconds faster than reality. The 1948 Olympics, however, continued to use Omega timing. The automatic times produced in the 1948 Olympics have never been released, but examination of the photos at the finish means that margins have been calculated to 1/100 second accuracy.

In 1952 the Omega Time Recorder was the first to use a quartz clock and print out results, earning the company a prestigious Cross of Merit from the Olympic Committee. Clocks were added to slit cameras for automatic time-stamping, accurate to the 100th of a second. Despite these improvements, the overall system was similar to that used in London in 1948 (the Racend Omega Timer). The average difference between the FAT and manual times for the men's 100 meters was 0.24 seconds, although this ranged from 0.05 seconds to 0.45 seconds. The average difference for the six runners in the 100 meter final was 0.41 seconds, much higher than the average. (the average difference in the women's 100 meters competition was also 0.24 but only 0.22 in the final). In the men's 200 meters, the average difference was 0.21 seconds, and in the men's 400 meters the average difference was 0.16 seconds.

In 1956 the average difference between the FAT and manual times for the men's 100 meters was 0.19 seconds, ranging from -0.05 to 0.34 seconds. In the men's 200 meters, the average difference was 0.16 seconds, and in the men's 400 meters the average difference was 0.11 seconds.

In 1960 the average difference between the FAT and manual times for the men's 100 meters was 0.15 seconds, ranging from -0.05 to 0.26 seconds. In the men's 200 meters, the average difference was 0.13 seconds, and in the men's 400 meters the average difference was 0.14 seconds.

In 1964, although manual timing was also used at the Olympics, the official times were measured with a FAT system but given the appearance of hand times. For example, Bob Hayes won the 100 meters in a FAT time of 10.06 seconds, which was converted to an official time of 10.0 seconds, despite the fact that officials with stopwatches had timed Hayes at 9.9 seconds. The FAT systems in 1964 and 1968 built in a 0.05 second delay, so Hayes' FAT time was measured as 10.01 seconds, which was rounded to 10.0 seconds for official purposes. The currently understood time of 10.06 has been determined by adding back the 0.05 seconds delay.

The same adjustment has been made to the 1968 Olympics FAT times. Hines' winning time for the 100 meters was measured as 9.89 seconds, subsequently adjusted to 9.95 seconds.

In 1972, having provided the official timing equipment since 1932, Omega lost the right to be the official timer for the Olympics to Longines. Omega returned for the 1976 Olympics. This was the first Olympics where official results were given to the nearest 1/100 seconds.

Read more about this topic:  Fully Automatic Time