Examples
- The smallest example is the symmetric group on 3 points, with 6 elements. The Frobenius kernel K has order 3, and the complement H has order 2.
- For every finite field Fq with q (> 2) elements, the group of invertible affine transformations, acting naturally on Fq is a Frobenius group. The preceding example corresponds to the case F3, the field with three elements.
- Another example is provided by the subgroup of order 21 of the collineation group of the Fano plane generated by a 3-fold symmetry σ fixing a point and a cyclic permutation τ of all 7 points, satisfying στ =τ²σ. Identifying F8* with the Fano plane, σ can be taken to be the restriction of the Frobenius automorphism σ(x)=x² of F8 and τ to be multiplication by any element not in the prime field F2 (i.e. a generator of the cyclic multiplicative group of F8). This Frobenius group acts simply transitively on the 21 flags in the Fano plane, i.e. lines with marked points.
- The dihedral group of order 2n with n odd is a Frobenius group with complement of order 2. More generally if K is any abelian group of odd order and H has order 2 and acts on K by inversion, then the semidirect product K.H is a Frobenius group.
- Many further examples can be generated by the following constructions. If we replace the Frobenius complement of a Frobenius group by a non-trivial subgroup we get another Frobenius group. If we have two Frobenius groups K1.H and K2.H then (K1 × K2).H is also a Frobenius group.
- If K is the non-abelian group of order 73 with exponent 7, and H is the cyclic group of order 3, then there is a Frobenius group G that is an extension K.H of H by K. This gives an example of a Frobenius group with non-abelian kernel. This was the first example of Frobenius group with nonabelian kernel (it was constructed by Otto Schmidt).
- If H is the group SL2(F5) of order 120, it acts fixed point freely on a 2-dimensional vector space K over the field with 11 elements. The extension K.H is the smallest example of a non-solvable Frobenius group.
- The subgroup of a Zassenhaus group fixing a point is a Frobenius group.
- Frobenius groups whose Fitting subgroup has arbitrarily large nilpotency class were constructed by Ito: Let q be a prime power, d a positive integer, and p a prime divisor of q −1 with d ≤ p. Fix some field F of order q and some element z of this field of order p. The Frobenius complement H is the cyclic subgroup generated by the diagonal matrix whose i,i'th entry is zi. The Frobenius kernel K is the Sylow q-subgroup of GL(d,q) consisting of upper triangular matrices with ones on the diagonal. The kernel K has nilpotency class d −1, and the semidirect product KH is a Frobenius group.
Read more about this topic: Frobenius Group
Famous quotes containing the word examples:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)