Alternative Definitions
There are a number of group theoretical properties which are interesting on their own right, but which happen to be equivalent to the group possessing a permutation representation that makes it a Frobenius group.
- G is a Frobenius group if and only if G has a proper, nonidentity subgroup H such that H ∩ Hg is the identity subgroup for every g ∈ G − H, i.e. H is a malnormal subgroup of G.
This definition is then generalized to the study of trivial intersection sets which allowed the results on Frobenius groups used in the classification of CA groups to be extended to the results on CN groups and finally the odd order theorem.
Assuming that is the semidirect product of the normal subgroup K and complement H, then the following restrictions on centralizers are equivalent to G being a Frobenius group with Frobenius complement H:
- The centralizer CG(k) is a subgroup of K for every nonidentity k in K.
- CH(k) = 1 for every nonidentity k in K.
- CG(h) ≤ H for every nonidentity h in H.
Read more about this topic: Frobenius Group
Famous quotes containing the words alternative and/or definitions:
“If English is spoken in heaven ... God undoubtedly employs Cranmer as his speechwriter. The angels of the lesser ministries probably use the language of the New English Bible and the Alternative Service Book for internal memos.”
—Charles, Prince Of Wales (b. 1948)
“Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.”
—Edmond De Goncourt (18221896)