Frequency-hopping Spread Spectrum - Variations of FHSS

Variations of FHSS

Adaptive Frequency-hopping spread spectrum (AFH) (as used in Bluetooth) improves resistance to radio frequency interference by avoiding using crowded frequencies in the hopping sequence. This sort of adaptive transmission is easier to implement with FHSS than with DSSS.

The key idea behind AFH is to use only the “good” frequencies, by avoiding the "bad" frequency channels—perhaps those "bad" frequency channels are experiencing frequency selective fading, or perhaps some third party is trying to communicate on those bands, or perhaps those bands are being actively jammed. Therefore, AFH should be complemented by a mechanism for detecting good/bad channels.

However, if the radio frequency interference is itself dynamic, then the strategy of “bad channel removal”, applied in AFH might not work well. For example, if there are several colocated frequency-hopping networks (as Bluetooth Piconet), then they are mutually interfering and the strategy of AFH fails to avoid this interference.

In this case, there is a need to use strategies for dynamic adaptation of the frequency hopping pattern. Such a situation can often happen in the scenarios that use unlicensed spectrum.

In addition, dynamic radio frequency interference is expected to occur in the scenarios related to cognitive radio, where the networks and the devices should exhibit frequency-agile operation.

Chirp modulation can be seen as a form of frequency-hopping that simply scans through the available frequencies in consecutive order.

The GSM cellular system uses frequency hopping, as a form of frequency interleaving, in view to avoid that two phone calls in adjacent cells constantly interfere with each other. However, this is not considered as spread spectrum, since the two phonecalls within the same cell never use the same frequency.

Read more about this topic:  Frequency-hopping Spread Spectrum

Famous quotes containing the word variations:

    I may be able to spot arrowheads on the desert but a refrigerator is a jungle in which I am easily lost. My wife, however, will unerringly point out that the cheese or the leftover roast is hiding right in front of my eyes. Hundreds of such experiences convince me that men and women often inhabit quite different visual worlds. These are differences which cannot be attributed to variations in visual acuity. Man and women simply have learned to use their eyes in very different ways.
    Edward T. Hall (b. 1914)