Frequency-hopping Spread Spectrum - Technical Considerations

Technical Considerations

The overall bandwidth required for frequency hopping is much wider than that required to transmit the same information using only one carrier frequency. However, because transmission occurs only on a small portion of this bandwidth at any given time, the effective interference bandwidth is really the same. Whilst providing no extra protection against wideband thermal noise, the frequency-hopping approach does reduce the degradation caused by narrowband interference sources.

One of the challenges of frequency-hopping systems is to synchronize the transmitter and receiver. One approach is to have a guarantee that the transmitter will use all the channels in a fixed period of time. The receiver can then find the transmitter by picking a random channel and listening for valid data on that channel. The transmitter's data is identified by a special sequence of data that is unlikely to occur over the segment of data for this channel and the segment can have a checksum for integrity and further identification. The transmitter and receiver can use fixed tables of channel sequences so that once synchronized they can maintain communication by following the table. On each channel segment, the transmitter can send its current location in the table.

In the US, FCC part 15 on unlicensed system in the 900 MHz and 2.4 GHz bands permits more power than non-spread spectrum systems. Both frequency hopping and direct sequence systems can transmit at 1 Watt. The limit is increased from 1 milliwatt to 1 watt or a thousand times increase. The Federal Communications Commission (FCC) prescribes a minimum number of channels and a maximum dwell time for each channel.

In a real multipoint radio system, space allows multiple transmissions on the same frequency to be possible using multiple radios in a geographic area. This creates the possibility of system data rates that are higher than the Shannon limit for a single channel. Spread spectrum systems do not violate the Shannon limit. Spread spectrum systems rely on excess signal to noise ratios for sharing of spectrum. This property is also seen in MIMO and DSSS systems. Beam steering and directional antennas also facilitate increased system performance by providing isolation between remote radios.

Read more about this topic:  Frequency-hopping Spread Spectrum

Famous quotes containing the word technical:

    In effect, to follow, not to force the public inclination; to give a direction, a form, a technical dress, and a specific sanction, to the general sense of the community, is the true end of legislature.
    Edmund Burke (1729–1797)