Properties
- If A is a trace-class operator.
- defines an entire function such that
- The function det(I + A) is continuous on trace-class operators, with
One can improve this inequality slightly to the following, as noted in Chapter 5 of Simon:
- If A and B are trace-class then
- The function det defines a homomorphism of G into the multiplicative group C* of non-zero complex numbers.
- If T is in G and X is invertible,
- If A is trace-class, then
Read more about this topic: Fredholm Determinant
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
Related Phrases
Related Words