Frame of A Vector Space - Relation To Bases

Relation To Bases

If the set is a frame of V, it spans V. Otherwise there would exist at least one non-zero which would be orthogonal to all . If we insert into the frame condition, we obtain


A \| \mathbf{v} \|^{2} \leq 0 \leq B \| \mathbf{v} \|^{2} ;

therefore, which is a violation of the initial assumptions on the lower frame bound.

If a set of vectors spans V, this is not a sufficient condition for calling the set a frame. As an example, consider and the infinite set given by

This set spans V but since we cannot choose . Consequently, the set is not a frame.

Read more about this topic:  Frame Of A Vector Space

Famous quotes containing the words relation to, relation and/or bases:

    To be a good enough parent one must be able to feel secure in one’s parenthood, and one’s relation to one’s child...The security of the parent about being a parent will eventually become the source of the child’s feeling secure about himself.
    Bruno Bettelheim (20th century)

    To be a good enough parent one must be able to feel secure in one’s parenthood, and one’s relation to one’s child...The security of the parent about being a parent will eventually become the source of the child’s feeling secure about himself.
    Bruno Bettelheim (20th century)

    The bases for historical knowledge are not empirical facts but written texts, even if these texts masquerade in the guise of wars or revolutions.
    Paul Deman (1919–1983)