Relation To Bases
If the set is a frame of V, it spans V. Otherwise there would exist at least one non-zero which would be orthogonal to all . If we insert into the frame condition, we obtain
therefore, which is a violation of the initial assumptions on the lower frame bound.
If a set of vectors spans V, this is not a sufficient condition for calling the set a frame. As an example, consider and the infinite set given by
This set spans V but since we cannot choose . Consequently, the set is not a frame.
Read more about this topic: Frame Of A Vector Space
Famous quotes containing the words relation to, relation and/or bases:
“To be a good enough parent one must be able to feel secure in ones parenthood, and ones relation to ones child...The security of the parent about being a parent will eventually become the source of the childs feeling secure about himself.”
—Bruno Bettelheim (20th century)
“To be a good enough parent one must be able to feel secure in ones parenthood, and ones relation to ones child...The security of the parent about being a parent will eventually become the source of the childs feeling secure about himself.”
—Bruno Bettelheim (20th century)
“The bases for historical knowledge are not empirical facts but written texts, even if these texts masquerade in the guise of wars or revolutions.”
—Paul Deman (19191983)