Fourier Transform - Fourier Transform On Euclidean Space

Fourier Transform On Euclidean Space

The Fourier transform can be in any arbitrary number of dimensions n. As with the one-dimensional case, there are many conventions. For an integrable function ƒ(x), this article takes the definition:

where x and ξ are n-dimensional vectors, and x· ξ is the dot product of the vectors. The dot product is sometimes written as .

All of the basic properties listed above hold for the n-dimensional Fourier transform, as do Plancherel's and Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the Riemann–Lebesgue lemma holds. (Stein & Weiss 1971)

Read more about this topic:  Fourier Transform

Famous quotes containing the words transform and/or space:

    Government ... thought [it] could transform the country through massive national programs, but often the programs did not work. Too often they only made things worse. In our rush to accomplish great deeds quickly, we trampled on sound principles of restraint and endangered the rights of individuals.
    Gerald R. Ford (b. 1913)

    Though seas and land be ‘twixt us both,
    Our faith and troth,
    Like separated souls,
    All time and space controls:
    Above the highest sphere we meet
    Unseen, unknown, and greet as angels greet.
    Richard Lovelace (1618–1658)