Four Exponentials Conjecture - Statement

Statement

If x1, x2 and y1, y2 are two pairs of complex numbers, with each pair being linearly independent over the rational numbers, then at least one of the following four numbers is transcendental:

An alternative way of stating the conjecture in terms of logarithms is the following. For 1 ≤ i,j ≤ 2 let λij be complex numbers such that exp(λij) are all algebraic. Suppose λ11 and λ12 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then

An equivalent formulation in terms of linear algebra is the following. Let M be the 2×2 matrix

where exp(λij) is algebraic for 1 ≤ i,j ≤ 2. Suppose the two rows of M are linearly independent over the rational numbers, and the two columns of M are linearly independent over the rational numbers. Then the rank of M is 2.

While a 2×2 matrix having linearly independent rows and columns usually means it has rank 2, in this case we require linear independence over a smaller field so the rank isn't forced to be 2. For example, the matrix

has rows and columns that are linearly independent over the rational numbers, since π is irrational. But the rank of the matrix is 1. So in this case the conjecture would imply that at least one of e, eπ, and eπ ² is transcendental (which in this case is already known since e is transcendental).

Read more about this topic:  Four Exponentials Conjecture

Famous quotes containing the word statement:

    If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.
    —J.L. (John Langshaw)

    Truth is used to vitalize a statement rather than devitalize it. Truth implies more than a simple statement of fact. “I don’t have any whisky,” may be a fact but it is not a truth.
    William Burroughs (b. 1914)

    The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.
    Polly Berrien Berends (20th century)