Explanation
Reactance is the imaginary part of the complex electrical impedance. The specification that the network must be passive and lossless implies that there are no resistors (lossless), or amplifiers or energy sources (passive) in the network. The network consequently must consist entirely of inductors and capacitors and the impedance will be purely an imaginary number with zero real part. Other than that, the theorem is quite general, in particular, it applies to distributed element circuits although Foster formulated it in terms of discrete inductors and capacitors. Foster's theorem applies equally to the admittance of a network, that is the susceptance (imaginary part of admittance) of a passive, lossless one-port monotonically increases with frequency. This result may seem counterintuitive since admittance is the reciprocal of impedance, but is easily proved. If an impedance,
- where,
- is impedance
- is reactance
- is the imaginary unit
then the admittance is given by
- where,
- is admittance
- is susceptance
If X is monotonically increasing with frequency then 1/X must be monotonically decreasing. −1/X must consequently be monotonically increasing and hence it is proved that B is increasing also. It is often the case in network theory that a principle or procedure apply equally to impedance or admittance as they do here. It is convenient in these circumstances to use the concept of immittance which can mean either impedance or admittance. The mathematics are carried out without stating which it is or specifying units until it is desired to calculate a specific example. Foster's theorem can thus be stated in a more general form as,
-
- Foster's theorem (immittance form)
- The imaginary immittance of a passive, lossless one-port monotonically increases with frequency.
Read more about this topic: Foster's Reactance Theorem
Famous quotes containing the word explanation:
“Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called silent poetry, and poetry speaking painting. The laws of each art are convertible into the laws of every other.”
—Ralph Waldo Emerson (18031882)
“How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existenceI have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.”
—Rutherford Birchard Hayes (18221893)
“Young children constantly invent new explanations to account for complex processes. And since their inventions change from week to week, furnishing the correct explanation is not quite so important as conveying a willingness to discuss the subject. Become an askable parent.”
—Ruth Formanek (20th century)