Formaldehyde Dehydrogenase - Ubiquitous Function

Ubiquitous Function

S-nitrosoglutathione reductase (GSNOR) is a class III alcohol dehydrogenase (ADH) encoded by the ADH5 gene in humans. It is a primordial ADH that is ubiquitously expressed in plant and animals alike. GSNOR reduces S-nitrosoglutathione (GSNO) to the unstable intermediate, S-hydroxylaminoglutathione, which then rearranges to form glutathione sulfinamide, or in the presence of GSH, forms oxidized glutathione (GSSG) and hydroxyl amine. Through this catabolic process, GSNOR regulates the cellular concentrations of GSNO and plays a central role in regulating the levels of endogenous S-nitrosothiols and controlling protein S-nitrosylation-based signaling. As an example of S-nitrosylation-based signaling, Barglow et al. showed that GSNO selectively S-nitrosylates reduced thioredoxin at cysteine 62. Nitrosylated thioredoxin, via directed protein-protein interaction, trans-nitrosylates the active site cysteine of caspase-3 thus inactivating caspase-3 and preventing induction of apoptosis.

As might be expected of an enzyme involved in regulating NO levels and signaling, pleiotropic effects are observed in GSNOR knockout models. Deleting the GSNOR gene from both yeast and mice increased the cellular levels of GSNO and nitrosylated proteins, and the yeast cells showed increased susceptibility to nitrosative stress. Null mice show increased levels of S-nitrosated proteins, increased beta adrenergic receptor numbers in lung and heart, diminished tachyphylaxis to β2-adrenergic receptor agonists, hyporesponsiveness to methacholine and allergen challenge and reduced infarct size after occlusion of the coronary artery. In addition, null mice show increased tissue damage and mortality following challenge with bacteria or endotoxin and are hypotensive under anesthesia yet normotensive in the conscious state. More related to its alcohol dehydrogenase activity, GSNOR null mice show a 30% reduction in the LD50 for formaldehyde and a decreased capacity to metabolize retinol, although it is clear from these studies that other pathways exist for the metabolism of these compounds.

Read more about this topic:  Formaldehyde Dehydrogenase

Famous quotes containing the word function:

    The function of literature, through all its mutations, has been to make us aware of the particularity of selves, and the high authority of the self in its quarrel with its society and its culture. Literature is in that sense subversive.
    Lionel Trilling (1905–1975)