Forking Lemma - Statement of The Lemma

Statement of The Lemma

The generalized version of the lemma is stated as follows. Let A be a probabilistic algorithm, with inputs (x, h1, ..., hq; r) that outputs a pair (J, y), where r refers to the random tape of A (that is, the random choices A will make). Suppose further that IG is a probability distribution from which x is drawn, and that H is a set of size h from which each of the hi values are drawn according to the uniform distribution. Let acc be the probability that on inputs distributed as described, the J output by A is greater than or equal to 1.

We can then define a "forking algorithm" FA that proceeds as follows, on input x:

  1. Pick a random tape r for A.
  2. Pick h1, ..., hq uniformly from H.
  3. Run A on input (x, h1, ..., hq; r) to produce (J, y).
  4. If J = 0, then return (0, 0, 0).
  5. Pick h'J, ..., h'q uniformly from H.
  6. Run A on input (x, h1, ..., hJ−1, h'J, ..., h'q; r) to produce (J', y').
  7. If J' = J and hJh'J then return (1, y, y'), otherwise, return (0, 0, 0).

Let frk be the probability that FA outputs a triple starting with 1, given an input x chosen randomly from IG. Then

Read more about this topic:  Forking Lemma

Famous quotes containing the words statement of and/or statement:

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.
    —J.L. (John Langshaw)