Focused Ion Beam - Usage

Usage

Unlike an electron microscope, FIB is inherently destructive to the specimen. When the high-energy gallium ions strike the sample, they will sputter atoms from the surface. Gallium atoms will also be implanted into the top few nanometers of the surface, and the surface will be made amorphous.

Because of the sputtering capability, the FIB is used as a micro- and nano-machining tool, to modify or machine materials at the micro- and nanoscale. FIB micro machining has become a broad field of its own, but nano machining with FIB is a field that is still developing. Commonly the smallest beam size for imaging is 2.5–6 nm. The smallest milled features are somewhat larger (10–15 nm) as this is dependent on the total beam size and interactions with the sample being milled.

FIB tools are designed to etch or machine surfaces, an ideal FIB might machine away one atom layer without any disruption of the atoms in the next layer, or any residual disruptions above the surface. Yet currently because of the sputter the machining typically roughens surfaces at the submicrometre length scales. An FIB can also be used to deposit material via ion beam induced deposition. FIB-assisted chemical vapor deposition occurs when a gas, such as tungsten hexacarbonyl (W(CO)6) is introduced to the vacuum chamber and allowed to chemisorb onto the sample. By scanning an area with the beam, the precursor gas will be decomposed into volatile and non-volatile components; the non-volatile component, such as tungsten, remains on the surface as a deposition. This is useful, as the deposited metal can be used as a sacrificial layer, to protect the underlying sample from the destructive sputtering of the beam. From nanometers to hundred of micrometers in length, tungsten metal deposition allows to put metal lines right where needed. Other materials such as platinum, cobalt, carbon, gold, etc., can also be locally deposited. Gas assisted deposition and FIB etching process are shown below.


FIB is often used in the semiconductor industry to patch or modify an existing semiconductor device. For example, in an integrated circuit, the gallium beam could be used to cut unwanted electrical connections, and/or to deposit conductive material in order to make a connection. The high level of surface interaction is exploited in patterned doping of semiconductors. FIB is also used for maskless implantation.

The FIB is also commonly used to prepare samples for the transmission electron microscope. The TEM requires very thin samples, typically ~100 nanometers. Other techniques, such as ion milling or electropolishing can be used to prepare such thin samples. However, the nanometer-scale resolution of the FIB allows the exact thin region to be chosen. This is vital, for example, in integrated circuit failure analysis. If a particular transistor out of several million on a chip is bad, the only tool capable of preparing an electron microscope sample of that single transistor is the FIB.

The drawbacks to FIB sample preparation are the above-mentioned surface damage and implantation, which produce noticeable effects when using techniques such as high-resolution "lattice imaging" TEM or electron energy loss spectroscopy. This damaged layer can be minimised by FIB milling with lower beam voltages, or by further milling with a low-voltage argon ion beam after completion of the FIB process.

FIB preparation can be used with cryogenically frozen samples in a suitably equipped instrument, allowing cross sectional analysis of samples containing liquids or fats, such as biological samples, pharmaceuticals, foams, inks, and food products

FIB is also used for Secondary ion mass spectrometry (SIMS). The ejected secondary ions are collected and analyzed after the surface of the specimen has been sputtered with a primary focused ion beam.

Read more about this topic:  Focused Ion Beam

Famous quotes containing the word usage:

    ...Often the accurate answer to a usage question begins, “It depends.” And what it depends on most often is where you are, who you are, who your listeners or readers are, and what your purpose in speaking or writing is.
    Kenneth G. Wilson (b. 1923)

    Pythagoras, Locke, Socrates—but pages
    Might be filled up, as vainly as before,
    With the sad usage of all sorts of sages,
    Who in his life-time, each was deemed a bore!
    The loftiest minds outrun their tardy ages.
    George Gordon Noel Byron (1788–1824)

    I am using it [the word ‘perceive’] here in such a way that to say of an object that it is perceived does not entail saying that it exists in any sense at all. And this is a perfectly correct and familiar usage of the word.
    —A.J. (Alfred Jules)