Fresnel Drag Coefficient
Assume that water flows in the pipes at velocity v. According to the non-relativistic theory of the luminiferous aether, the speed of light should be increased when "dragged" along by the water, and decreased when "overcoming" the resistance of the water. The overall speed of a beam of light should be a simple additive sum of its speed through the water plus the speed of the water.
That is, if n is the index of refraction of water, so that c/n is the velocity of light in stationary water, then the predicted speed of light w in one arm would be
and the predicted speed in the other arm would be
Hence light traveling against the flow of water should be slower than light traveling with the flow of water.
The interference pattern between the two beams when the light is recombined at the observer depends upon the transit times over the two paths, and can be used to calculate the speed of light as a function of the speed of the water.
Fizeau found that
In other words, light appeared to be dragged by the water, but the magnitude of the dragging was much lower than expected.
The Fizeau experiment forced physicists to accept the empirical validity of an old, theoretically unsatisfactory theory of Augustin-Jean Fresnel (1818) that had been invoked to explain an 1810 experiment by Arago, namely, that a medium moving through the stationary aether drags light propagating through it with only a fraction of the medium's speed, with a dragging coefficient f given by
In 1895, Hendrik Lorentz predicted the existence of an extra term due to dispersion:
- .
Read more about this topic: Fizeau Experiment
Famous quotes containing the word drag:
“I know those little phrases that seem so innocuous and, once you let them in, pollute the whole of speech. Nothing is more real than nothing. They rise up out of the pit and know no rest until they drag you down into its dark.”
—Samuel Beckett (19061989)