Finite Strain Theory - Transformation of A Surface and Volume Element

Transformation of A Surface and Volume Element

To transform quantities that are defined with respect to areas in a deformed configuration to those relative to areas in a reference configuration, and vice versa, we use Nanson's relation, expressed as

 da~\mathbf{n} = J~dA~\mathbf{F}^{-T}\cdot \mathbf{N}
\,\!

where is an area of a region in the deformed configuration, is the same area in the reference configuration, and is the outward normal to the area element in the current configuration while is the outward normal in the reference configuration, is the deformation gradient, and .

The corresponding formula for the transformation of the volume element is

 dv = J~dV
\,\!
Derivation of Nanson's relation
To see how this formula is derived, we start with the oriented area elements

in the reference and current configurations:

 d\mathbf{A} = dA~\mathbf{N} ~;~~ d\mathbf{a} = da~\mathbf{n}
\,\!

The reference and current volumes of an element are

 dV = d\mathbf{A}^{T}\cdot d\mathbf{L} ~;~~ dv = d\mathbf{a}^{T} \cdot d\mathbf{l}
\,\!

where .

Therefore,

 d\mathbf{a}^{T} \cdot d\mathbf{l}= dv = J~dV = J~d\mathbf{A}^{T}\cdot d\mathbf{L}
\,\!

or,

 d\mathbf{a}^{T} \cdot \mathbf{F}\cdot d\mathbf{L} = dv = J~dV = J~d\mathbf{A}^{T}\cdot d\mathbf{L}
\,\!

so,

 d\mathbf{a}^{T} \cdot \mathbf{F} = J~d\mathbf{A}^{T}
\,\!

So we get

 d\mathbf{a} = J~\mathbf{F}^{-T} \cdot d\mathbf{A}
\,\!

or,

 da~\mathbf{n} = J~dA~\mathbf{F}^{-T}\cdot \mathbf{N}\qquad \qquad \square
\,\!

Read more about this topic:  Finite Strain Theory

Famous quotes containing the words transformation of, surface, volume and/or element:

    Whoever undertakes to create soon finds himself engaged in creating himself. Self-transformation and the transformation of others have constituted the radical interest of our century, whether in painting, psychiatry, or political action.
    Harold Rosenberg (1906–1978)

    Nature centres into balls,
    And her proud ephemerals,
    Fast to surface and outside,
    Scan the profile of the sphere;
    Knew they what that signified,
    A new genesis were here.
    Ralph Waldo Emerson (1803–1882)

    The other 1000 are principally the ‘old Yankee stock,’ who have lost the town, politically, to the Portuguese; who deplore the influx of the ‘off-Cape furriners’; and to whom a volume of genealogy is a piece of escape literature.
    —For the State of Massachusetts, U.S. public relief program (1935-1943)

    The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Gray’s Anatomy.
    —J.G. (James Graham)