n-th Difference
The nth forward difference of a function f(x) is given by
where is the binomial coefficient. Forward differences applied to a sequence are sometimes called the binomial transform of the sequence, and have a number of interesting combinatorial properties.
Forward differences may be evaluated using the Nörlund–Rice integral. The integral representation for these types of series is interesting because the integral can often be evaluated using asymptotic expansion or saddle-point techniques; by contrast, the forward difference series can be extremely hard to evaluate numerically, because the binomial coefficients grow rapidly for large n.
Read more about this topic: Finite Difference
Famous quotes containing the word difference:
“The difference between style and taste is never easy to define, but style tends to be centered on the social, and taste upon the individual. Style then works along axes of similarity to identify group membership, to relate to the social order; taste works within style to differentiate and construct the individual. Style speaks about social factors such as class, age, and other more flexible, less definable social formations; taste talks of the individual inflection of the social.”
—John Fiske (b. 1939)