Field With One Element - History

History

In 1957, Jacques Tits introduced the theory of buildings, which relate algebraic groups to abstract simplicial complexes. One of the assumptions is a non-triviality condition: If the building is an n-dimensional abstract simplicial complex, and if k < n, then every k-simplex of the building must be contained in at least three n-simplices. This is analogous to the condition in classical projective geometry that a line must contain at least three points. However, there are degenerate geometries which satisfy all the conditions to be a projective geometry except that the lines admit only two points. The analogous objects in the theory of buildings are called apartments. Apartments play such a constituent role in the theory of buildings that Tits conjectured the existence of a theory of projective geometry in which the degenerate geometries would have equal standing with the classical ones. This geometry would take place, he said, over a field of characteristic one. Using this analogy it was possible to describe some of the elementary properties of F1, but it was not possible to construct it.

A separate inspiration for F1 came from algebraic number theory. Weil's proof of the Riemann hypothesis for curves over finite fields started with a curve C over a finite field k, took its product C ×k C, and then examined its diagonal. If the integers were a curve over a field, the same proof would prove the Riemann hypothesis. The integers Z are one dimensional, which suggests that they may be a curve, but they are not an algebra over any field. One of the conjectured properties of F1 is that Z should be an F1-algebra. This would make it possible to construct the product Z ×F1 Z, and it is hoped that the Riemann hypothesis for Z can be proved in the same way as the Riemann hypothesis for a curve over a finite field.

Another angle comes from Arakelov geometry, where Diophantine equations are studied using tools from complex geometry. The theory involves complicated comparisons between finite fields and the complex numbers. Here the existence of F1 is useful for technical reasons.

By 1991, Alexander Smirnov had taken some steps towards algebraic geometry over F1. He introduced extensions of F1 and used them to handle P1 over F1. Algebraic numbers were treated as maps to this P1, and conjectural approximations to the Riemann–Hurwitz formula for these maps were suggested. These approximations imply very profound assertions like the abc conjecture. The extensions of F1 later on were denoted as Fq with q = 1n.

In 1993, Yuri Manin gave a series of lectures on zeta functions where he proposed developing a theory of algebraic geometry over F1. He suggested that zeta functions of varieties over F1 would have very simple descriptions, and he proposed a relation between the K-theory of F1 and the homotopy groups of spheres. This inspired several people to attempt to construct F1. In 2000, Zhu proposed that F1 was the same as F2 except that the sum of one and one was one, not zero. Deitmar suggested that F1 should be found by forgetting the additive structure of a ring and focusing on the multiplication. Toën and Vaquié built on Hakim's theory of relative schemes and defined F1 using symmetric monoidal categories. Nikolai Durov constructed F1 as a commutative algebraic monad. Soulé constructed it using algebras over the complex numbers and functors from categories of certain rings. Borger used descent to construct it from the finite fields and the integers.

Recently, Alain Connes, Caterina Consani and Matilde Marcolli have connected F1 with noncommutative geometry.

Read more about this topic:  Field With One Element

Famous quotes containing the word history:

    I cannot be much pleased without an appearance of truth; at least of possibility—I wish the history to be natural though the sentiments are refined; and the characters to be probable, though their behaviour is excelling.
    Frances Burney (1752–1840)

    Modern Western thought will pass into history and be incorporated in it, will have its influence and its place, just as our body will pass into the composition of grass, of sheep, of cutlets, and of men. We do not like that kind of immortality, but what is to be done about it?
    Alexander Herzen (1812–1870)

    The greatest honor history can bestow is that of peacemaker.
    Richard M. Nixon (1913–1995)