Definition
Given two density matrices ρ and σ, the fidelity is defined by
By M½ of a positive semidefinite matrix M, we mean its unique positive square root given by the spectral theorem. The Euclidean inner product from the classical definition is replaced by the Hilbert-Schmidt inner product. When the states are classical, i.e. when ρ and σ commute, the definition coincides with that for probability distributions.
An equivalent definition is given by
where the norm is the trace norm (sum of the singular values). This definition has the advantage that it clearly shows that the fidelity is symmetric in its two arguments.
Notice by definition F is non-negative, and F(ρ,ρ) = 1. In the following section it will be shown that it can be no larger than 1.
In the original 1994 paper of Jozsa the name 'fidelity' was used for the quantity and this convention is often used in the literature. According to this convention 'fidelity' has a meaning of probability.
Read more about this topic: Fidelity Of Quantum States
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)