Fidelity of Quantum States - Definition

Definition

Given two density matrices ρ and σ, the fidelity is defined by

By M½ of a positive semidefinite matrix M, we mean its unique positive square root given by the spectral theorem. The Euclidean inner product from the classical definition is replaced by the Hilbert-Schmidt inner product. When the states are classical, i.e. when ρ and σ commute, the definition coincides with that for probability distributions.

An equivalent definition is given by

where the norm is the trace norm (sum of the singular values). This definition has the advantage that it clearly shows that the fidelity is symmetric in its two arguments.

Notice by definition F is non-negative, and F(ρ,ρ) = 1. In the following section it will be shown that it can be no larger than 1.

In the original 1994 paper of Jozsa the name 'fidelity' was used for the quantity and this convention is often used in the literature. According to this convention 'fidelity' has a meaning of probability.

Read more about this topic:  Fidelity Of Quantum States

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)