Fictitious Force - Mathematical Derivation of Fictitious Forces - Crossing A Carousel - Rotating Observer

Rotating Observer

The rotating observer sees the walker travel a straight line from the center of the carousel to the periphery, as shown in Figure 5. Moreover, the rotating observer sees that the walker moves at a constant speed in the same direction, so applying Newton's law of inertia, there is zero force upon the walker. These conclusions do not agree with the inertial observer. To obtain agreement, the rotating observer has to introduce fictitious forces that appear to exist in the rotating world, even though there is no apparent reason for them, no apparent gravitational mass, electric charge or what have you, that could account for these fictitious forces.

To agree with the inertial observer, the forces applied to the walker must be exactly those found above. They can be related to the general formulas already derived, namely:


\mathbf{F}_{\mathrm{fict}} =
- 2 m \boldsymbol\Omega \times \mathbf{v}_\mathrm{B} - m \boldsymbol\Omega \times (\boldsymbol\Omega \times \mathbf{x}_\mathrm{B} ) - m \frac{d \boldsymbol\Omega}{dt} \times \mathbf{x}_\mathrm{B}.

In this example, the velocity seen in the rotating frame is:

with uR a unit vector in the radial direction. The position of the walker as seen on the carousel is:

and the time derivative of Ω is zero for uniform angular rotation. Noticing that

and

we find:


\mathbf{F}_{\mathrm{fict}} = - 2 m \omega s \mathbf{u}_{\theta} + m \omega^2 R(t) \mathbf{u}_R.

To obtain a straight-line motion in the rotating world, a force exactly opposite in sign to the fictitious force must be applied to reduce the net force on the walker to zero, so Newton's law of inertia will predict a straight line motion, in agreement with what the rotating observer sees. The fictitious forces that must be combated are the Coriolis force (first term) and the centrifugal force (second term). (These terms are approximate.) By applying forces to counter these two fictitious forces, the rotating observer ends up applying exactly the same forces upon the walker that the inertial observer predicted were needed.

Because they differ only by the constant walking velocity, the walker and the rotational observer see the same accelerations. From the walker's perspective, the fictitious force is experienced as real, and combating this force is necessary to stay on a straight line radial path holding constant speed. It's like battling a crosswind while being thrown to the edge of the carousel.

Read more about this topic:  Fictitious Force, Mathematical Derivation of Fictitious Forces, Crossing A Carousel

Famous quotes containing the word observer:

    The possibility of interpretation lies in the identity of the observer with the observed. Each material thing has its celestial side; has its translation, through humanity, into the spiritual and necessary sphere, where it plays a part as indestructible as any other.
    Ralph Waldo Emerson (1803–1882)