Fermi Acceleration - Second Order Fermi Acceleration

Second Order Fermi Acceleration

Second order Fermi Acceleration relates to the amount of energy gained during the motion of a charged particle in the presence of randomly moving "magnetic mirrors". So, if the magnetic mirror is moving towards the particle, the particle will end up with increased energy upon reflection. The opposite holds if the mirror is receding. This notion was used by Fermi (1949) to explain the mode of formation of cosmic rays. In this case the magnetic mirror is a moving interstellar magnetized cloud. In a random motion environment, Fermi argued, the probability of a head-on collision is greater than a head-tail collision, so particles would, on average, be accelerated. This random process is now called second-order Fermi acceleration, because the mean energy gain per bounce depends on the mirror velocity squared, . Surprisingly, the resulting energy spectrum anticipated from this physical setup is very similar to the one found for first order Fermi acceleration.

Read more about this topic:  Fermi Acceleration

Famous quotes containing the word order:

    In order to cultivate yourself and to drop no lower than the level of the milieu in which you have landed, it is not enough to read Pickwick and memorize a monologue from Faust.... You need to work continually day and night, to read ceaselessly, to study, to exercise your will.... Each hour is precious.
    Anton Pavlovich Chekhov (1860–1904)