Feature (computer Vision) - Feature Vectors and Feature Spaces

Feature Vectors and Feature Spaces

In some applications it is not sufficient to extract only one type of feature to obtain the relevant information from the image data. Instead two or more different features are extracted, resulting in two or more feature descriptors at each image point. A common practice is to organize the information provided by all these descriptors as the elements of one single vector, commonly referred to as a feature vector. The set of all possible feature vectors constitutes a feature space.

A common example of feature vectors appears when each image point is to be classified as belonging to a specific class. Assuming that each image point has a corresponding feature vector based on a suitable set of features, meaning that each class is well separated in the corresponding feature space, the classification of each image point can be done using standard classification method.

Another, and related example, occurs when neural network based processing is applied to images. The input data fed to the neural network is often given in terms of a feature vector from each image point, where the vector is constructed from several different feature extracted from the image data. During a learning phase, the networks can itself find which combinations of different features that are useful for solving the problem at hand.

Read more about this topic:  Feature (computer Vision)

Famous quotes containing the words feature and/or spaces:

    Columbus stood in his age as the pioneer of progress and enlightenment. The system of universal education is in our age the most prominent and salutary feature of the spirit of enlightenment, and it is peculiarly appropriate that the schools be made by the people the center of the day’s demonstration. Let the national flag float over every schoolhouse in the country and the exercises be such as shall impress upon our youth the patriotic duties of American citizenship.
    Benjamin Harrison (1833–1901)

    We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.
    Henry David Thoreau (1817–1862)