Fast Kalman Filter - Applications

Applications

The FKF method extends the very high accuracies of Satellite Geodesy to Virtual Reference Station (VRS) Real Time Kinematic (RTK) surveying, mobile positioning and ultra-reliable navigation (Lange, 2003). First important applications will be real-time optimum calibration of global observing systems in Meteorology, Geophysics, Astronomy etc.

For example, a Numerical Weather Prediction (NWP) system can now forecast observations with confidence intervals and their operational quality control can thus be improved. A sudden increase of uncertainty in predicting observations would indicate that important observations were missing (observability problem) or an unpredictable change of weather is taking place (controllability problem). Remote sensing and imaging from satellites may partly be based on forecast information. Controlling stability of such feedback between the forecast and satellite data calls for the theory of optimal Kalman filtering. No suboptimal solution would do a proper job as public safety is usually at stake.

The computational advantage of FKF is marginal for applications using only small amounts of data in real-time data. Therefore improved built-in calibration and data communication infrastructures need to be developed first and introduced to public use before personal gadgets and machine-to-machine (M2M) devices can make the best out of FKF.

Read more about this topic:  Fast Kalman Filter