Faraday's Law of Induction - Flux Through A Surface and EMF Around A Loop

Flux Through A Surface and EMF Around A Loop

Faraday's law of induction makes use of the magnetic flux ΦB through a hypothetical surface Σ whose boundary is a wire loop. Since the wire loop may be moving, we write Σ(t) for the surface. The magnetic flux is defined by a surface integral:

where dA is an element of surface area of the moving surface Σ(t), B is the magnetic field, and B·dA is a vector dot product (the infinitesimal amount of magnetic flux). In more visual terms, the magnetic flux through the wire loop is proportional to the number of magnetic flux lines that pass through the loop.

When the flux changes—because B changes, or because the wire loop is moved or deformed, or both—Faraday's law of induction says that the wire loop acquires an EMF, defined as the energy available per unit charge that travels once around the wire loop (the unit of EMF is the volt). Equivalently, it is the voltage that would be measured by cutting the wire to create an open circuit, and attaching a voltmeter to the leads. According to the Lorentz force law (in SI units),

the EMF on a wire loop is:

where E is the electric field, B is the magnetic field (aka magnetic flux density, magnetic induction), d is an infinitesimal arc length along the wire, and the line integral is evaluated along the wire (along the curve the conincident with the shape of the wire).

The EMF is also given by the rate of change of the magnetic flux:

where is the magnitude of the electromotive force (EMF) in volts and ΦB is the magnetic flux in webers. The direction of the electromotive force is given by Lenz's law.

For a tightly wound coil of wire, composed of N identical loops, each with the same ΦB, Faraday's law of induction states that

where N is the number of turns of wire and ΦB is the magnetic flux in webers through a single loop.

Read more about this topic:  Faraday's Law Of Induction

Famous quotes containing the words flux and/or surface:

    Existence is no more than the precarious attainment of relevance in an intensely mobile flux of past, present, and future.
    Susan Sontag (b. 1933)

    I have passed down the river before sunrise on a summer morning, between fields of lilies still shut in sleep; and when, at length, the flakes of sunlight from over the bank fell on the surface of the water, whole fields of white blossoms seemed to flash open before me, as I floated along, like the unfolding of a banner, so sensible is this flower to the influence of the sun’s rays.
    Henry David Thoreau (1817–1862)