Fanconi Anemia - Molecular Basis of FA

Molecular Basis of FA

There are 15 genes responsible for FA, one of them being the breast-cancer susceptibility gene BRCA2. They are involved in the recognition and repair of damaged DNA; genetic defects leave them unable to repair DNA. The FA core complex of 8 proteins is normally activated when DNA stops replicating because of damage. The core complex adds ubiquitin, a small protein that combines with BRCA2 in another cluster to repair DNA. At the end of the process, ubiquitin is removed.

Recent studies have shown that eight of these proteins, FANCA, -B, -C, -E, -F, -G, -L and –M assemble to form a core protein complex in the nucleus. According to current models, the complex moves from the cytoplasm into the nucleus following nuclear localization signals on FANCA and FANCE. Assembly is activated by replicative stress, particularly DNA damage caused by cross-linking agents(mitomycin C or cisplatin) or reactive oxygen species (ROS). Indeed, FANCA and FANCG have been observed to multimerize when a cell is faced with oxidative stress-induced damage.

Following assembly, the protein core complex activates FANCL protein which acts as an E3 ubiquitin-ligase and monoubiquitinates FANCD2.

Monoubiquitinated FANCD2, also known as FANCD2-L, then goes on to interact with a BRCA1/BRCA2 complex. Details are not known, but similar complexes are involved in genome surveillance and associated with a variety of proteins implicated in DNA repair and chromosomal stability. With a crippling mutation in any FA protein in the complex, DNA repair is much less effective, as shown by its response to damage caused by cross-linking agents such as cisplatin, diepoxybutane and Mitomycin C. Bone marrow is particularly sensitive to this defect.

In another pathway responding to ionizing radiation, FANCD2 is thought to be phosphorylated by protein complex ATM/ATR activated by double-strand DNA breaks, and takes part in S-phase checkpoint control. This pathway was proven by the presence of radioresistant DNA synthesis, the hallmark of a defect in the S phase checkpoint, in patients with FA-D1 or FA-D2. Such a defect readily leads to uncontrollable replication of cells and might also explain the increase frequency of AML in these patients.

Read more about this topic:  Fanconi Anemia

Famous quotes containing the word basis:

    The basis of art is truth, both in matter and in mode.
    Flannery O’Connor (1925–1964)