F-1 (rocket Engine) - Design

Design

The Rocketdyne-developed F-1 engine is the most powerful single-nozzle liquid fueled rocket engine ever used in service. The RD-170 produces slightly more thrust through a cluster of four combustion chambers and four nozzles. The M-1 rocket engine was designed to have more thrust, however it was only tested at the component level. The F-1 was a liquid-fueled rocket motor, burning RP-1 (kerosene) as fuel, and using liquid oxygen (LOX) as the oxidizer. A turbopump was used to inject fuel and oxygen into the combustion chamber.

The heart of the engine was the thrust chamber, which mixed and burned the fuel and oxidizer to produce thrust. A domed chamber at the top of the engine served as a manifold supplying liquid oxygen to the injectors, and also served as a mount for the gimbal bearing which transmitted the thrust to the body of the rocket. Below this dome were the injectors, which directed fuel and oxidizer into the thrust chamber in a way designed to promote mixing and combustion. Fuel was supplied to the injectors from a separate manifold; some of the fuel first travelled in 178 tubes down the length of the thrust chamber—which formed approximately the upper half of the exhaust nozzle—and back in order to cool the nozzle.

A gas-generator was used to drive a turbine which in turn drove separate fuel and oxygen pumps, each feeding the thrust chamber assembly. The turbine was driven at 5,500 RPM by the gas generator, producing 55,000 brake horsepower (41 MW). The fuel pump produced 15,471 gallons (58,564 litres) of RP-1 per minute while the oxidizer pump delivered 24,811 gal (93,920 l) of liquid oxygen per minute. Environmentally, the turbopump was required to withstand temperatures ranging from input gas at 1,500 °F (816 °C), to liquid oxygen at −300 °F (−184 °C). Structurally, fuel was used to lubricate and cool the turbine bearings.

Below the thrust chamber was the nozzle extension, roughly half the length of the engine. This extension increased the expansion ratio of the engine from 10:1 to 16:1. The exhaust from the turbopump was fed into the nozzle extension by a large, tapered manifold; this relatively cool gas formed a film which protected the nozzle extension from the hot (5,800 °F, 3,200 °C) exhaust gas.

The F-1 burned 3,945 pounds (1,789 kg) of liquid oxygen and 1,738 pounds (788 kg) of RP-1 each second, generating 1,500,000 pounds-force (6.7 MN) of thrust. This equated to a flow rate of 413.5 US gallons (1,565 l) of LOX and 257.9 US gallons (976 l) RP-1 per second. During their two and a half minutes of operation, the five F-1s propelled the Saturn V vehicle to a height of 42 miles (68 km) and a speed of 6,164 miles per hour (9,920 km/h). The combined propellant flow rate of the five F-1s in the Saturn V was 3,357 US gallons (12,710 l) per second. Each F-1 engine had more thrust than three Space Shuttle Main Engines combined.

Designer of the pump for the E-1/F-1 for Rocketdyne was Ernest A. Lamont. His hand written original calculations are part of the family archives and available for display. He stated that the design of the rocket engine hinged on the question of whether the pump design was viable.

Read more about this topic:  F-1 (rocket Engine)

Famous quotes containing the word design:

    Joe ... you remember I said you wouldn’t be cheated?... Nobody is really. Eventually all things work out. There’s a design in everything.
    Sidney Buchman (1902–1975)

    A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering.
    Freeman Dyson (b. 1923)

    What but design of darkness to appall?—
    If design govern in a thing so small.
    Robert Frost (1874–1963)