Extracellular Field Potential

The extracellular field potential is the electrical potential produced by cells, e.g. nerve or muscle cells, outside of the cell. Electrophysiological studies investigate these potentials using extracellular microelectrodes. In these experiments the extracellular field potential will be detected as an electrical potential whose source and composition is often ambiguous, making its interpretation difficult. Individual nerve cells neurons may produce spikes seen as peaks of some tens to hundreds of microvolts. Contributions from neighboring neurons may overlap, producing extracellular potentials of up to several millivolts. Spatially integrating over even larger populations of cells, i.e. lumps of nervous or muscular tissue, will produce signals commonly called local field potentials (LFP) that can be recorded either in the tissue or with suitable equipment at the body surface as, e.g., electroencephalogram (EEG), electrocardiogram (ECG), or electromyogram (EMG).

For individual cells, the time course of the extracellular potential theoretically is inversely proportional to the transmembrane current. In practice, however, this is complicated considerably by the very complex morphology of neurons and the overlap of contributions from adjacent cells.

Famous quotes containing the words field and/or potential:

    We need a type of theatre which not only releases the feelings, insights and impulses possible within the particular historical field of human relations in which the action takes place, but employs and encourages those thoughts and feelings which help transform the field itself.
    Bertolt Brecht (1898–1956)

    The germ of violence is laid bare in the child abuser by the sheer accident of his individual experience ... in a word, to a greater degree than we like to admit, we are all potential child abusers.
    F. Gonzalez-Crussi, Mexican professor of pathology, author. “Reflections on Child Abuse,” Notes of an Anatomist (1985)