Experimental Uncertainty Analysis

The purpose of this introductory article is to discuss the experimental uncertainty analysis of a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity. The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline.

The uncertainty has two components, namely, bias (related to accuracy) and the unavoidable random variation that occurs when making repeated measurements (related to precision). The measured quantities may have biases, and they certainly have random variation, so that what needs to be addressed is how these are "propagated" into the uncertainty of the derived quantity. Uncertainty analysis is often called the "propagation of error."

It will be seen that this is a difficult and in fact sometimes intractable problem when handled in detail. Fortunately, approximate solutions are available that provide very useful results, and these approximations will be discussed in the context of a practical experimental example.

Read more about Experimental Uncertainty Analysis:  Introduction, Discussion, Figure Gallery, See Also

Famous quotes containing the words experimental, uncertainty and/or analysis:

    If we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning, concerning matter of fact and existence? No. Commit it then to flames: for it can contain nothing but sophistry and illusion.
    David Hume (1711–1776)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)

    Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.
    Joan Didion (b. 1934)