Expanded Octet - History and Controversy

History and Controversy

The debate over the nature and classification of hypervalent molecules goes back to Gilbert N. Lewis and Irving Langmuir and the debate over the nature of the chemical bond in the 1920s. Lewis maintained the importance of the two-center two-electron (2c-2e) bond in describing hypervalence, thus allowing for expanded octets. Langmuir, on the other hand, upheld the dominance of the octet rule and preferred the use of ionic bonds to account for hypervalence without violating the rule (e.g. SF42+, F22−).

In the late 1920s and 1930s, Sugden argued for the existence of a two-center one-electron (2c-1e) bond and thus rationalized bonding in hypervalent molecules without the need for expanded octets or ionic bond character; this was poorly accepted at the time. In the 1940s and 1950s, Rundle and Pimentel popularized the idea of the three-center four-electron bond, which is essentially the same concept which Sugden attempted to advance decades earlier; the three-center four-electron bond can be alternatively viewed as consisting of two collinear two-center one-electron bonds, with the remaining two nonbonding electrons localized to the ligands.

The attempt to actually prepare hypervalent organic molecules began with Hermann Staudinger and Georg Wittig in the first half of the twentieth century, who sought to challenge the extant valence theory and successfully prepare nitrogen and phosphorus-centered hypervalent molecules. The theoretical basis for hypervalency was not delineated until J.I. Musher's work in 1969.

In 1990, Magnusson published a seminal work definitively excluding the role of d-orbital hybridization in bonding in hypervalent compounds of second-row elements. This had long been a point of contention and confusion in describing these molecules using molecular orbital theory. Part of the confusion here originates from the fact that one must include d-functions in the basis sets used to describe these compounds (or else unreasonably high energies and distorted geometries result), and the contribution of the d-function to the molecular wavefunction is large. These facts were historically interpreted to mean that d-orbitals must be involved in bonding. However, Magnusson concludes in his work that d-orbital involvement is not implicated in hypervalency.

Read more about this topic:  Expanded Octet

Famous quotes containing the words history and/or controversy:

    The history of the world is none other than the progress of the consciousness of freedom.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    And therefore, as when there is a controversy in an account, the parties must by their own accord, set up for right Reason, the Reason of some Arbitrator, or Judge, to whose sentence, they will both stand, or their controversy must either come to blows, or be undecided, for want of a right Reason constituted by Nature; so is it also in all debates of what kind soever.
    Thomas Hobbes (1579–1688)