Simple Lie Groups
The simple Lie groups form a number of series (classical Lie groups) labelled A, B, C and D. In addition we have the exceptional groups G2 (the automorphism group of the octonions), F4, E6, E7, E8. These last four groups can be viewed as the symmetry groups of projective planes over O, C⊗O, H⊗O and O⊗O respectively, where O is the octonions and the tensor products are over the reals.
The classification of Lie groups corresponds to the classification of root systems and so the exceptional Lie groups correspond to exceptional root systems and exceptional Dynkin diagrams.
Read more about this topic: Exceptional Object
Famous quotes containing the words simple, lie and/or groups:
“Economy, prudence, and a simple life are the sure masters of need, and will often accomplish that which, their opposites, with a fortune at hand, will fail to do.”
—Clara Barton (18211912)
“Im plotting revolution against this lie that the majority has a monopoly of the truth. What are these truths that always bring the majority rallying round? Truths so elderly they are practically senile. And when a truth is as old as that, gentlemen, you can hardly tell it from a lie.”
—Henrik Ibsen (18281906)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)