Evolutionary Developmental Biology - Basic Principles

Basic Principles

Charles Darwin's theory of evolution is based on three principles: natural selection, heredity, and variation. At the time that Darwin wrote, the principles underlying heredity and variation were poorly understood. In the 1940s, however, biologists incorporated Gregor Mendel's principles of genetics to explain both, resulting in the modern synthesis. It was not until the 1980s and 1990s, however, when more comparative molecular sequence data between different kinds of organisms was amassed and detailed, that an understanding of the molecular basis of the developmental mechanisms has arisen.

Currently, it is well understood how genetic mutation occurs. However, developmental mechanisms are not understood sufficiently to explain which kinds of phenotypic variation can arise in each generation from variation at the genetic level. Evolutionary developmental biology studies how the dynamics of development determine the phenotypic variation arising from genetic variation and how that affects phenotypic evolution (especially its direction). At the same time evolutionary developmental biology also studies how development itself evolves.

Thus, the origins of evolutionary developmental biology come from both an improvement in molecular biology techniques as applied to development, and the full appreciation of the limitations of classic neo-Darwinism as applied to phenotypic evolution. Some evo-devo researchers see themselves as extending and enhancing the modern synthesis by incorporating into it findings of molecular genetics and developmental biology. Others, drawing on findings of discordances between genotype and phenotype and epigenetic mechanisms of development, are mounting an explicit challenge to neo-Darwinism.

Evolutionary developmental biology is not yet a unified discipline, but can be distinguished from earlier approaches to evolutionary theory by its focus on a few crucial ideas. One of these is modularity: as has been long recognized, plants and animal bodies are modular: they are organized into developmentally and anatomically distinct parts. Often these parts are repeated, such as fingers, ribs, and body segments. Evo-devo seeks the genetic and evolutionary basis for the division of the embryo into distinct modules, and for the partly independent development of such modules.

Another central idea is that some gene products function as switches whereas others act as diffusible signals. Genes specify proteins, some of which act as structural components of cells and others as enzymes that regulate various biochemical pathways within an organism. Most biologists working within the modern synthesis assumed that an organism is a straightforward reflection of its component genes. The modification of existing, or evolution of new, biochemical pathways (and, ultimately, the evolution of new species of organisms) depended on specific genetic mutations. In 1961, however, Jacques Monod, Jean-Pierre Changeux and François Jacob discovered within the bacterium Escherichia coli a gene that functioned only when "switched on" by an environmental stimulus. Later, scientists discovered specific genes in animals, including a subgroup of the genes which contain the homeobox DNA motif, called Hox genes, that act as switches for other genes, and could be induced by other gene products, morphogens, that act analogously to the external stimuli in bacteria. These discoveries drew biologists' attention to the fact that genes can be selectively turned on and off, rather than being always active, and that highly disparate organisms (for example, fruit flies and human beings) may use the same genes for embryogenesis (e.g., the genes of the "developmental-genetic toolkit", see below), just regulating them differently.

Similarly, organismal form can be influenced by mutations in promoter regions of genes, those DNA sequences at which the products of some genes bind to and control the activity of the same or other genes, not only protein-specifying sequences. This finding suggested that the crucial distinction between different species (even different orders or phyla) may be due less to differences in their content of gene products than to differences in spatial and temporal expression of conserved genes. The implication that large evolutionary changes in body morphology are associated with changes in gene regulation, rather than the evolution of new genes, suggested that Hox and other "switch" genes may play a major role in evolution, something that contradicts the neo-darwinian synthesis.

Another focus of evo-devo is developmental plasticity, the basis of the recognition that organismal phenotypes are not uniquely determined by their genotypes. If generation of phenotypes is conditional, and dependent on external or environmental inputs, evolution can proceed by a "phenotype-first" route, with genetic change following, rather than initiating, the formation of morphological and other phenotypic novelties. The case for this was argued for by Mary Jane West-Eberhard in her 2003 book Developmental plasticity and evolution.

Read more about this topic:  Evolutionary Developmental Biology

Famous quotes containing the words basic and/or principles:

    Of course I lie to people. But I lie altruistically—for our mutual good. The lie is the basic building block of good manners. That may seem mildly shocking to a moralist—but then what isn’t?
    Quentin Crisp (b. 1908)

    ... the history of the race, from infancy through its stages of barbarism, heathenism, civilization, and Christianity, is a process of suffering, as the lower principles of humanity are gradually subjected to the higher.
    Catherine E. Beecher (1800–1878)