# Euler's Totient Function - Some Values of The Function

Some Values of The Function

The first 99 values (sequence A000010 in OEIS) are shown in the table and graph below:

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0+ 1 1 2 2 4 2 6 4 6
10+ 4 10 4 12 6 8 8 16 6 18
20+ 8 12 10 22 8 20 12 18 12 28
30+ 8 30 16 20 16 24 12 36 18 24
40+ 16 40 12 42 20 24 22 46 16 42
50+ 20 32 24 52 18 40 24 36 28 58
60+ 16 60 30 36 32 48 20 66 32 44
70+ 24 70 24 72 36 40 36 60 24 78
80+ 32 54 40 82 24 64 42 56 40 88
90+ 24 72 44 60 46 72 32 96 42 60

The top line, y = n − 1, is a true upper bound. It is attained whenever n is prime.
The lower line, y ≈ 0.267n which connects the points for n = 30, 60, and 90 is misleading. If the plot were continued, there would be points below it.
(Examples: for n = 210 = 7×30, φ(n) ≈ 0.229 n; for n = 2310 = 11×210 φ(n) ≈ 0.208 n; and for n = 30030 = 13×2310 φ(n) ≈ 0.192 n.)
In fact, there is no lower bound straight line; no matter how gentle the slope of a line (through the origin) is, there will eventually be points of the plot below the line.