Euler Characteristic - Examples

Examples

The Euler characteristic can be calculated easily for general surfaces by finding a polygonization of the surface (that is, a description as a CW-complex) and using the above definitions.

Name Image Euler characteristic
Interval 1
Circle 0
Disk 1
Sphere 2
Torus
(Product of two circles)
0
Double torus −2
Triple torus −4
Real projective plane 1
Möbius strip 0
Klein bottle 0
Two spheres (not connected)
(Disjoint union of two spheres)
2 + 2 = 4
Three spheres (not connected)
(Disjoint union of three spheres)
2 + 2 + 2 = 6

Any contractible space (that is, one homotopy equivalent to a point) has trivial homology, meaning that the 0th Betti number is 1 and the others 0. Therefore its Euler characteristic is 1. This case includes Euclidean space of any dimension, as well as the solid unit ball in any Euclidean space — the one-dimensional interval, the two-dimensional disk, the three-dimensional ball, etc.

The n-dimensional sphere has Betti number 1 in dimensions 0 and n, and all other Betti numbers 0. Hence its Euler characteristic is — that is, either 0 or 2.

The n-dimensional real projective space is the quotient of the n-sphere by the antipodal map. It follows that its Euler characteristic is exactly half that of the corresponding sphere — either 0 or 1.

The n-dimensional torus is the product space of n circles. Its Euler characteristic is 0, by the product property.

Read more about this topic:  Euler Characteristic

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)