Euler Angles - Higher Dimensions

Higher Dimensions

It is possible to define parameters analogous to the Euler angles in dimensions higher than three.

The number of degrees of freedom of a rotation matrix is always less than the dimension of the matrix squared. That is, the elements of a rotation matrix are not all completely independent. For example, the rotation matrix in dimension 2 has only one degree of freedom, since all four of its elements depend on a single angle of rotation. A rotation matrix in dimension 3 (which has nine elements) has three degrees of freedom, corresponding to each independent rotation, for example by its three Euler angles or a magnitude one (unit) quaternion.

In SO(4) the rotation matrix is defined by two quaternions, and is therefore 6-parametric (three degrees of freedom for every quaternion). The 4x4 rotation matrices have therefore 6 out of 16 independent components.

Any set of 6 parameters that define the rotation matrix could be considered an extension of Euler angles to dimension 4.

In general, the number of euler angles in dimension D is quadratic in D; since any one rotation consists of choosing two dimensions to rotate between, the total number of rotations available in dimension D is, which for D=2,3,4 yields .

Read more about this topic:  Euler Angles

Famous quotes containing the words higher and/or dimensions:

    [O]ur people are steadily increasing their spending for higher standards of living ... the slogan of progress is changing from the full dinner pail to the full garage.
    Herbert Hoover (1874–1964)

    It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?—or animals?—even forests or oceans or rocks?—in this world of ours or, even, in worlds or dimensions elsewhere.
    Doris Lessing (b. 1919)