Isometries in The Complex Plane
In terms of complex numbers, the isometries of the plane either of the form
or of the form
for some complex numbers a and ω with |ω| = 1. This is easy to prove: if a = f(0) and ω = f(1) − f(0) and if one defines
then g is an isometry, g(0) = 0, and g(1) = 1. It is then easy to see that g is either the identity or the conjugation, and the statement being proved follows from this and from the fact that f(z) = a + ωg(z).
This is obviously related to the previous classification of plane isometries, since:
- functions of the type z → a + z are translations;
- functions of the type z → ωz are rotations (when |ω| = 1);
- the conjugation is a reflection.
Read more about this topic: Euclidean Plane Isometry
Famous quotes containing the words complex and/or plane:
“The human mind is so complex and things are so tangled up with each other that, to explain a blade of straw, one would have to take to pieces an entire universe.... A definition is a sack of flour compressed into a thimble.”
—Rémy De Gourmont (18581915)
“As for the dispute about solitude and society, any comparison is impertinent. It is an idling down on the plane at the base of a mountain, instead of climbing steadily to its top.”
—Henry David Thoreau (18171862)