Isometries in The Complex Plane
In terms of complex numbers, the isometries of the plane either of the form
or of the form
for some complex numbers a and ω with |ω| = 1. This is easy to prove: if a = f(0) and ω = f(1) − f(0) and if one defines
then g is an isometry, g(0) = 0, and g(1) = 1. It is then easy to see that g is either the identity or the conjugation, and the statement being proved follows from this and from the fact that f(z) = a + ωg(z).
This is obviously related to the previous classification of plane isometries, since:
- functions of the type z → a + z are translations;
- functions of the type z → ωz are rotations (when |ω| = 1);
- the conjugation is a reflection.
Read more about this topic: Euclidean Plane Isometry
Famous quotes containing the words complex and/or plane:
“In ordinary speech the words perception and sensation tend to be used interchangeably, but the psychologist distinguishes. Sensations are the items of consciousnessa color, a weight, a texturethat we tend to think of as simple and single. Perceptions are complex affairs that embrace sensation together with other, associated or revived contents of the mind, including emotions.”
—Jacques Barzun (b. 1907)
“As for the dispute about solitude and society, any comparison is impertinent. It is an idling down on the plane at the base of a mountain, instead of climbing steadily to its top.”
—Henry David Thoreau (18171862)