Ernest Beutler - Academic Career and Principal Scientific Contributions

Academic Career and Principal Scientific Contributions

Beutler pursued a remarkably eclectic research career, and made fundamental contributions in many different areas of science over 56 years of active publication. His first scientific paper was published in 1952, and concerned the effect of X-irradiation on susceptibility to influenza virus in mice. This was an attempt to determine whether irradiated mice might offer a better experimental model in which to detect human viral infections. Not long afterward, he published a paper on the lag phase of E. coli, which is also influenced by X-irradiation. This work, carried out during his residency in the laboratory of Leon O. Jacobson, was aimed at the development of an assay for a humoral radioprotective factor, and reflected a chance observation. Beutler also developed an early interest in iron metabolism, prompted by his clinical observation of the rapid symptomatic improvement of iron deficient patients treated with iron: an improvement that preceded any major hematologic change, and showed that numerous enzymes were sensitive to iron deficiency.

After completing his residency (1953), Beutler applied for a commission as a Lieutenant in the U.S. Army, and was assigned to the Army Malaria Research Program. During this period, he worked at Joliet Prison in Illinois (1953–1954), investigating anemia produced by antimalarial drugs. In the course of his work, he identified glucose-6-phosphate dehydrogenase (G-6-PD) deficiency as a genetic defect that leads to the lysis of red blood cells under conditions of oxidative stress. This work hinged on his demonstration that red blood cell glutathione was unstable to oxidative stress. Later, he was to develop an assay for glutathione that was widely used in studies of red cell oxidative metabolism.

He was later transferred to Camp Detrick in Frederick, Maryland (1954–1955), where he studied Q fever. He was honorably discharged from the Army with the rank of Captain.

Beutler then joined the faculty of the Department of Medicine at the University of Chicago, where he studied iron metabolism and red blood cell metabolism. In 1959, he became chairman of the Department of Medicine of the City of Hope National Medical Center in Duarte, California, and in 1979 assumed the chairmanship of the Department of Clinical Research at the Scripps Clinic and Research Foundation. Three years later, he was asked to become Chairman of a merged department (the Department of Molecular and Experimental Medicine) at Scripps, which later became The Scripps Research Institute in La Jolla, CA. He maintained his position as Chairman until his 80th birthday, only a few days before his death.

Not long after moving to California, Beutler made one of his most important contributions. A new colleague at the City of Hope and ultimately a lifelong friend, Susumu Ohno had recently demonstrated that the histologically observable Barr body present in the nuclei of mammalian female cells was a hyperchromatic X chromosome. Beutler immediately recognized that this might account for the variable expression of X-linked genes in females heterozygous for X-linked mutations. He soon determined that random X chromosome inactivation causes tissue mosaicism in female mammals, in that each somatic cell expresses one (but not both) of the alleles of X-linked genes with which it is endowed. This he accomplished by showing that two populations of erythrocytes exist in the blood of African American women who are heterozygous for G6PD deficiency. Mary F. Lyon independently hypothesized that variegated coat colors in mice might arise from random X chromosome inactivation. This, too, flowed from Ohno’s observations.

Beutler’s seminal work on G6PD deficiency led him to further explore hemolytic anemias caused by various enzyme deficiencies. The systematic methodology that he developed became the standard approach to study of patients with these disorders.

Beutler made major contributions to the understanding of Tay-Sachs disease. He purified the enzyme that is aberrant in this disease and demonstrated its multimeric structure. His group cloned the gene responsible for Gaucher disease and developed treatments for this disease, as well as diagnostic tests. Beutler also developed a screening test for galactosemia, which is used to this day to detect the disease in neonates, and prevent its severe consequences.

Beutler was the first to attempt pharmacologic intervention in sickle cell disease by increasing methemoglobin levels, carboxyhemoglobin levels, and fetal hemoglobin levels. The latter approach depended on administration of estrogen, progesterone and human chorionic gonadotropin. These attempts were unsuccessful, but set the stage for presaged the use of hydroxyurea as a treatment modality.

In addition, Beutler designed the first artificial storage media for red blood cells, introduced the use of mannitol (still a mainstay in red cell preservation), and devised a variety of approaches to maintaining red cell ATP and 2,3-DPG levels and determined the viability of the cells in human volunteers.

He also played a major role in pioneering new therapies for leukemia: bone marrow transplantation in acute leukemia, and 2-chorodeoxyadenosine in chonic leukemias and lymphomas.

Beginning in the mid-1990s, Beutler attempted to positionally clone the mutation responsible for the common adult-onset form of hereditary hemochromatosis. He failed to identify the mutation before it was found by others to affect HFE, a member of the major histocompatibility complex family of proteins. However, in contrast to the reports of others, he found that only about 2% of males and no females homozygous for the mutation showed severe clinical manifestations of the disease. This study depended upon genotypic and phenotypic analysis of more than 43,000 subjects.

Beutler served as an editor of Williams Hematology, a widely used text in this medical specialty, for more than 20 years: from its inception until the last year of his life. In keeping with his editorial interests and his requirements as a publishing scientist, Beutler also wrote the software for the first comprehensive bibliographic retrieval system used by publishing scientists. Later commercialized as Reference Manager, it is still in wide use today.

He authored more than 800 publications, 19 books, and over 300 book chapters over a 55 year scientific career.

Read more about this topic:  Ernest Beutler

Famous quotes containing the words academic, career, principal and/or scientific:

    The academic expectations for a child just beginning school are minimal. You want your child to come to preschool feeling happy, reasonably secure, and eager to explore and learn.
    Bettye M. Caldwell (20th century)

    What exacerbates the strain in the working class is the absence of money to pay for services they need, economic insecurity, poor daycare, and lack of dignity and boredom in each partner’s job. What exacerbates it in upper-middle class is the instability of paid help and the enormous demands of the career system in which both partners become willing believers. But the tug between traditional and egalitarian models of marriage runs from top to bottom of the class ladder.
    Arlie Hochschild (20th century)

    The principal office of history I take to be this: to prevent virtuous actions from being forgotten, and that evil words and deeds should fear an infamous reputation with posterity.
    Tacitus (c. 55–c. 120)

    All problems are finally scientific problems.
    George Bernard Shaw (1856–1950)