Definition
A given binary relation ~ on a set A is said to be an equivalence relation if and only if it is reflexive, symmetric and transitive. Equivalently, for all a, b and c in A:
- a ~ a. (Reflexivity)
- if a ~ b then b ~ a. (Symmetry)
- if a ~ b and b ~ c then a ~ c. (Transitivity)
A together with the relation ~ is called a setoid. The equivalence class of a under ~, denoted, is defined as .
Read more about this topic: Equivalence Relation
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)